loading...

بهترين و سريعترين مرجع دانلود كارآموزي و پروژه و پايان نامه

دانلود پايان نامه و پروژه و كارآموزي در تمامي رشته هاي دانشگاهي

بازدید : 586
11 زمان : 1399:2

تعداد صفحات:203

نوع فايل:word

فهرست مطالب:

مقدمه

تاريخچه

زمين و انرژي خورشيدي

وضعيت انرژي در ايران

زواياي خورشيدي با جداول ترسيمي آن ها

زاويه ساعت

زمان خورشيدي

زاويه برخورد

مسير حركت روزانه خورشيد در ماه هاي مختلف سال

وسايل اندازه گيري تابش خورشيدي

آذر سنج خورشيدي

آذرسنج آبوت

شيد سنج

انرژي خورشيدي و مقايسه‌ آن با انرژي هاي ديگر

امكان استفاده از انرژي خورشيدي

انرژي باد

انرژي حاصل از بيوماس (بيوجرم)

طرح توليد انرژي

روش هاي غيرمستقيم

بيوگاز

سوخت هاي مايع

انواع تكنولوژي هاي انرژي خورشيدي

آبگرم خانگي

گرم كردن فضا

سردكردن فضا

توليد بخار صنعتي

الكتريسيته توسط سلول هاي خورشيدي

الكتريسيته توسط تبديل حرارتي انرژي خورشيد

توليد هيدروژن

تقطير خورشيدي

خشك كن خورشيدي

پخت و پز

تابش خورشيد

خورشيد، مولد انرژي خورشيدي

مقدار ثابت خورشيد

گردش انتقالي زمين

تابش عمودي - تابش مورب

تاثيرات اتمسفر در ميزان انرژي دريافتي

جذب تشعشعات خورشيدي

تعيين زاويه بين شعاع هاي خورشيدي و سطح زمين

عملكرد سلول هاي خورشيدي

سلول هاي فتوولتيك و انرژي خورشيدي

امروز و فرداي سلول هاي خورشيدي

تبديل فتوولتائيك

ذخيره سازي انرژي

تبديل- جمع آوري و ذخيره حرارتي

برخي ديگر از گردآورنده هاي تخت مايع

گردآورنده هاي تخت خلا

چندين طرح نوين

گردآورنده هاي تمركزي

انواع روش هاي تمركز

انواع گردآورنده هاي تمركزي

سيستم هاي گرما خورشيدي

سيستم هاي تهيه آبگرم خورشيدي

سيستم هاي آبگرم خورشيدي براي گرمايش ساختمان و مصرف

سيستم هاي آبگرم خورشيدي براي گرمايش و سرمايش

سيستم هاي تهيه آب شيرين خورشيدي و دستگاه هاي تقطير

مقدمه

روش هاي تهيه آب شيرين

تهيه آب شيرين با استفاده از روش تقطير

آب شيرين كن تقطيري چند مرحله اي

معرفي و مقايسه انواع آب شيرين كن هاي خورشيدي

آب شيرين كن خورشيدي يك فتيله اي

آب شيرين كن يا دستگاه تقطير خورشيدي از نوع ريزشي

آب شيرين كن خورشيدي از نوع دودكشي

آب شيرين كن خورشيدي از نوع پيشاني گرم

آب شيرين كن سه مرحله اي (دستگاه تقطير خورشيدي سه اثره)

آب شيرين كن خورشيدي دو لگنه

آب شيرين كن هاي سبك و قابل حمل

آب شيرين كن خورشيدي نوع قايقي

آب شيرين كن خورشيدي با پوشش نازك

آب شيرين كن خورشيدي كره اي با خشك كن

آب شيرين كن خورشيدي لوله اي هم مركز

آب شيرين كن خورشيدي با بازتابنده

آب شيرين كن خورشيدي قالب پلاستيكي

طراحي آب گرمكن خورشيدي گردآور پارابوليك

مشخصات قسمت انعكاس گردآور پارابوليك

صفحه نگاهدارنده

صفحه حامل

شيب صفحه منعكس كننده

ياتاقان و بازوها

مشخصات قسمت جذب كننده

نيم لوله منعكس كننده

پايه دستگاه

سيال عامل

مخزن ذخيره - مبدل حرارتي

نوع سيركولاسيون

لوله ها- شيرآلات- اتصالات و كنترل ها

عايق بندي

نگاه داري گردآور

محاسبات آبگرمكن خورشيدي گردآور پارابوليك

ميزان آبگرم مورد نياز

مبدل حرارتي - مخزن ذخيره

انتقال حرارت واحد سطح در مبدل

انرژي دريافتي از خورشيد

ضريب تمركز

درجه حرارت سطح خارجي لوله جذب كننده

درجه حرارت سطح داخلي لوله جذب كننده

درجه حرارت سيال عامل

افت هاي مسير

مشخصات پمپ سيركولاسيون

راندمان گردآور

محاسبات دستگاه آب شيرين كن خورشيدي به ظرفيت 50 Lit/day

سيستم هاي خشك كن خورشيدي

تاريخچه

اصول خشك كردن و خشك كن هاي خورشيدي

خشك كن خورشيدي براي غلات

طرح خشك كن خورشيدي برنج

سيستم هاي سرد كننده خورشيدي

چيلر جذبي پيوسته

معرفي يك پروژه تحقيقاتي و كاربردي خورشيدي

اولين ساختمان خورشيدي در ايران

مقدمه

استفاده از انرژي هاي تجديد پذير در سيستم هاي گرمايش و سرمايش ساختمان خورشيدي

چكيده

توجه

محاسبات انتقال حرارت

گرمايش و سرمايش غيرفعال

سرمايش

گرمايش غيرفعال با استفاده از گرمخانه

گرمايش و سرمايش فعال خورشيدي

سيستم گرمايش خورشيدي

سيستم سرمايش خورشيدي

يادآوري

خلاصه و نتيجه محاسبات بارهاي حرارتي ساختمان (زمستاني)

منابع و ماخذ

فهرست اشكال:

اتم هاي هيدروژن و هليوم و انرژي حاصله از آن ها

تجزيه اشعه‌هاي خورشيد

تجزيه انرژي خورشيد در اتمسفر زمين

زاويه انحراف – زاويه بين اشعه خورشيد و صفحه استوا در ظهر خورشيدي

حركت ساليانه زمين بدور خورشيد

حركت خورشيد از طلوع تا غروب

زواياي خورشيد نسبت به سطح مورب

موقعيت خورشيد نسبت به زمين در ماه هاي مختلف سال

زاويه ارتفاع و زاويه جهت نماي خورشيد

زاويه ارتفاع خورشيد با نمودار مسير حركت روزانه

زاويه جهت نماي خورشيد با نمودار مسير حركت روزانه

انعكاس مسير حركت روزانه خورشيد از نيكره شفاف به سطح مستوي

موقعيت خورشيد روي جدول نمودار مسير حركت روزانه خورشيد با تعيين دو زاويه

نقطه گذاري و ترسيم مسير حركت روزانه خورشيد روي جدول نمودار روزانه

مسير حركت روزانه خورشيد در ماه هاي مختلف و فصول مختلف سال

نمودار تعيين موقعيت خورشيد در ساعات مختلف روز از فصول مختلف

زاويه ارتفاع خورشيد

شيد سنج الكتريكي انگستروم

شيدسنج بينايي دقيق اپلي، (مخصوص پژوهش در تابش خورشيدي)

شيدسنج بينايي سياه و سفيد (قابل استفاده روي گردآورهاي خورشيدي)

انواع روتور چرخ بادي

واحد توليد بيوگاز

تقطير خورشيدي

خشك كن كابينتي

خشك كن جابجائي

اجاق خورشيدي جعبه‌اي به همراه بازتابنده

رابطه شدت تشعشع خورشيدي و زاويه برخورد

عوامل موثر بر انرژي دريافتي

نور خورشيد دريافتي زمين در ساعات مختلف روز

حركت ظاهري خورشيد براي ناظر روي زمين در نقطه C

اتم هاي ساكن با دايره مشخص شده‌اند

توليد جريان الكتريسيته بر اثر برخورد شعاع خورشيد به سلول

قدرت و ولتاژ در درجه حرارت‌هاي مختلف T

نمودار يك سيستم سيليكوني

مشخصه جريان – ولتاژ يك سلول خورشيدي

نمودار سيستم پمپاژ آب

نيروگاه خورشيدي ماهواره‌اي

نمودار دو سيستم ذخيره انرژي

خصوصيات برخي مايع هاي مورد استفاده در سيستم ذخيره محسوس

خصوصيات برخي جامدهاي مورد استفاده در سيستم

آرايش هاي مختلف سيستم ذخيره نهان

گردآورنده تخت مايع

گردآورند‌هاي تخت

گردآوردنده‌هاي با لوله تخليه شده

گردآورنده‌هاي لانه زنبوري

گردآوردنده تخت با تابش دوگانه

گردآورنده تله حرارتي

گردآورنده با بستر فشرده

گرمكن هواي خورشيدي

انواع گرمكن هاي خورشيدي

گرمكن خورشيدي هواي دو مسيره

گرمكن هوا با صفحه شيشه‌اي رويهم

گرمكن هواي ماتريسي

گرمكن هواي لانه زنبوري با بستر متخلخل

گردآوردنده تمركزي استوانه‌اي

گردآورنده تمركزي مقعر

انواع گردآورنده‌هاي تمركزي

گردآورنده تمركزي مسطح با بازتابنده

آبگرم كن خورشيدي ترموسيفوني خانگي

مخزن ذخيره آبگرم كن خورشيدي خانگي

آبگرمكن خورشيد با مخزن افقي و سيركولاسيون طبيعي

آبگرم كن خورشيدي خانگي با جريان اجباري

دياگرام كامل يك سيستم

اتصال دو گردآور به طريق معكوس و موازي

سيستم گرمايش و آبگرم مصرفي خورشيدي

سيستم گرمايش و سرمايش خورشيدي

سيستم آب شيرين كن خورشيدي به روش تقطيري

روش تقطير ساده آب شور (تهيه آب شيرين)

آب شيرين كن خورشيدي تقطيري يكطرفه

آب شيرين كن خورشيدي دو طرفه

آب شيرين كن چند حوضچه‌اي مايل

دياگرام شماتيكي تاسيسات آب شيرين كن خورشيدي چند مرحله‌اي تقطيري

آب شيرين كن تقطيري يك – دو و چهار مرحله‌اي

آب شيرين كن يك فتيله‌اي

آب شيرين كن فتيله‌اي از نوع كلكتور اواپراتوري

آب شيرين كن حوضچه‌اي مايل با سيستم پر كننده

آب شيرين كن حوضچه‌اي مايل دو طرف با سيستم پر كن و مخزن تقطير

آب شيرين كن از نوع ريزشي (ديفيوژن)

آب شيرين كن خورشيدي مدل دودكشي

آب شيرين كن سه مرحله‌اي

آب شيرين كن دو لنگه

آب شيرين كن خورشيدي نوع قايقي

آب شيرين كن خورشيدي با پوشش نازك

آب شيرين كن كره‌اي با خشك كن دوار

آب شيرين كن خورشيدي لوله‌اي متحدالمركز

آب شيرين كن خورشيدي با بازتابنده

آب شيرين كن خورشيدي قالب پلاستيكي

استفاده از روش الكترودياليز براي شيرين كردن آب

استفاده از روش تراوش معكوس براي شيرين كردن آب

قسمت انعكاس دهنده

صفحه حامل

پايه گردآور

سيستم ساده آبگرمكن خورشيدي با سيركولاسيون اجباري

خشك كن خورشيدي

برنج خشك كن خورشيدي

مقطع برنج خشك كن خورشيدي

برنج خشك كن خورشيدي ساخت انستيتو تكنولوژي آسيا(A.I.T)

خشك كن خورشيدي مدل روستايي

خشك كن خورشيدي نيمه صنعتي

خشك كن خورشيدي با روش مكانيكي

شماتيك يك سيستم تبريد جذبي ساده

تركيب ماشين حرارت و سيستم تبريد تراكمي

شماتيك دو مرحله‌اي چيلر جذبي

پلان ساختمان خورشيدي

كانال زيرزميني (زمهرير) و بادگيرها

روش انتقال هواي گرم از گرمخانه

سيستم گرمايش فعال خورشيدي

سيستم سرمايش فعال خورشيدي (سيستم تركيبي)

مقدمه:

تحقيقات و اختراعات و بهره گيري از انرژي هاي مختلف، از اساسي ترين و مهم ترين گام هايي هستند كه انسان ها در طول تاريخ در راه پيشرفت جوامع خود برداشته اند. رشد علم و صنعت و فناوري در جهان امروز، روش هاي مختلف استفاده از انرژي را كه در دوران قبل از انقلاب صنعتي معمول بوده دگرگون كرده، و شناخت منابع انرژيهاي جديد، تحولي عظيم در توسعه صنعتي و تكامل اجتماعي بشر به وجود آورده است.

خورشيد عامل و منشا انرژي هاي گوناگوني است كه در طبيعت موجود است از جمله: سوخت هاي فسيلي كه در اعماق زمين ذخيره شده اند، انرژي آبشارها و باد، رشد گياهان كه بيشتر حيوانات و انسان براي بقاي خود از آن ها استفاده ميكنند، مواد آلي كه قابل تبديل به انرژي حرارتي و مكانيكي هستند، امواج درياها، قدرت جزر و مد كه براساس جاذبه و حركت زمين بدور خورشيد و ماه حاصل ميشود، اين ها همه نمادهايي از انرژي خورشيد هستند. انرژي هسته اي را ميتوان يك استثناء كلي دانست، با اين كه امروزه يكي از منابع مهم توليد انرژي در جهان شناخته شده است. انرژي اتمي احتياج به فناوري بسيار پيشرفته و پرهزينه دارد كه در موقع استفاده از آن، خطرات احتمالي و مضرات آن را نيز بايد مدنظر داشت. با مطالعه در تاريخ انسان ها، مشاهده ميشود كه انرژي قابل استفاده براي انسان نخستين، تنها قدرت بدني او بود. مدت ها گذشت تا توانست با رام كردن حيوانات و به خدمت گرفتن ساير انسان ها و همچنين سوزاندن درختان، احتياجات خود را برطرف كند. بالاخره انسان با دستيابي به منابع سوخت هاي فسيلي مثل ذغال سنگ و نفت و گاز قدرت مادي خويش را به طرز بي سابقه اي افزايش داد.

استفاده از قدرت باد در آسياب ها و توربين ها، و كشتيراني و بكارگيري انرژي آب در چرخ ها و توربين هاي آبي، پس از گسترش معمولمات علمي و فناوري بشر امكان پذير شد.

دستيابي به قوانين فيزيكي و اصول علمي انرژي هاي مختلف و نحوه استفاده هاي گوناگون از آن ها، زندگي بشر را راحت تر و طرز فكر او را متوجه ماديات ساخت.

وابستگي شديد جوامع صنعتي به منابع انرژي به خصوص سوخت هاي نفتي و به كارگيري و مصرف بي رويه آن ها، منابع عظيمي را كه طي قرون متمادي در لايه هاي زيرين زمين تشكيل شده است تخليه مي نمايد. با توجه به اين كه منابع انرژي زيرزميني با سرعت فوق العاده اي مصرف ميشوند و در آينده اي نه چندان دور چيزي از آن ها باقي نخواهد ماند، نسل فعلي وظيفه دارد به آن دسته از منابع انرژي كه داراي عمر و توان زيادي هستند روي آورده و دانش خود را براي بهره برداري از آن ها گسترش دهد.

خورشيد يكي از دو منبع مهم انرژي است كه بايد به آن روي آورد زيرا به فناوريهاي پيشرفته و پرهزينه نياز نداشته و ميتواند به عنوان يك منبع مفيد و تامين كننده انرژي در اكثر نقاط جهان بكار گرفته شود. بعلاوه استفاده از آن برخلاف انرژي هسته اي، خطر و اثرات نامطلوبي از خود باقي نميگذارد و براي كشورهائي كه فاقد منابع انرژي زيرزميني هستند، مناسب ترين راه براي دستيابي به نيرو و رشد و توسعه اقتصاد مي باشد.

ايران با وجود اين كه يكي از كشورهاي نفت خيز جهان به شمار ميرود و داراي منابع عظيم گاز طبيعي نيز مي باشد، خوشبختانه به علت شدت تابش خورشيد در اكثر مناطق كشور، اجراي طرح هاي خورشيدي الزامي و امكان استفاده از انرژي خورشيد در شهرها و شصت هزار روستاي پراكنده در سطح مملكت، ميتواند صرفه جويي مهمي در مصرف نفت و گاز را به همراه داشته باشد.

فناوري ساده، آلوده نشدن هوا و محيط زيست و از همه مهم تر ذخيره شدن سوخت هاي فسيلي براي آيندگان،‌ يا تبديل آن ها به مواد و مصنوعات پر ارزش با استفاده از تكنيك پتروشيمي، از عمده دلايلي هستند كه لزوم استفاده از انرژي خورشيد را براي كشور ما آشكار ميسازند.

تبديل انرژي خورشيد به هر شكلي مطلوب ميباشد ولي امكانات اقتصادي طرح هاي مختلف بايد دقيقاً سنجيده شوند. امروزه استفاده از انرژي حرارتي خورشيد براي گرم كردن منازل، از لحاظ فناوري امكان پذير مي باشد. از نظر اقتصادي نيز به علت افزايش روزافزون قيمت سوخت هاي فسيلي و ساير منابع انرژي و تلاش متخصصين در كاهش هزينه مواد اوليه و لوازم مورد نياز براي جمع آوري حرارت و پرتوهاي خورشيدي محققين و دانشمندان را در جهت مطالعه و بهينه سازي سيستم هاي خورشيدي تشويق نموده و به پيشرفت هاي مهمي نيز دست يافته اند. مراكز و سازمان هاي معتبر علمي و پژوهشي جهان نيز همه ساله سمينارها و كنفرانس هاي مختلفي را در رابطه با مسائل انرژي، به خصوص انرژي خورشيدي تشكيل داده و تبادل اطلاعات از پژوهش هاي جديد را ممكن مي سازند. اميد است در ايران نيز تشكيل چنين سمينارها و سخنراني ها، مردم را با روش هاي استفاده از انرژي خورشيدي آشنا ساخته و كاربرد آن ها را ميسر سازد.

بازدید : 511
11 زمان : 1399:2

تعداد صفحات:106
نوع فايل:word
فهرست مطالب:
چكيده
مقدمه
فصل اول : كليات
مقدمه
اهميت كلكتورهاي خورشيدي
كلكتورهاي صفحه تخت
انتخاب جاذب
كلكتورهاي لوله خلا
بازده كلكتور
انتخاب كلكتور اقتصادي
بازار كلكتورهاي خورشيدي
فصل دوم : استاندارد بين المللي تست كلكتور خورشيدي (ISO 9806-1:1994)
تعاريف
جذب كننده
سطح جذب كننده
زاويه برخورد
دهانه
سطح دهانه
سطح ناخالص كلكتور
كلكتور متمركز كننده
بازده كلكتور
كلكتور با لوله خلاء
كلكتور با صفحه تخت
سيال انتقال حرارت
پرتودهي
پرتودهي مستقيم خورشيدي
پرتودهي كل خورشيدي
جرم اپتيكي هوا
پيرانومتر
پيرجيومتر
پيرهليومتر
انرژي تابشي
شار انرژي تابشي
تابش
پرتوسنج
شبيه ساز پرتودهي خورشيدي
كلكتور حرارتي خورشيدي
ثابت زماني
نمادها و واحدها
نصب و تعيين مكان كلكتور
كليات
چهارچوب نصب كلكتور
زاويه شيب
جهت گيري كلكتور
سايه گيري از پرتودهي خورشيدي مستقيم
پرتودهي خورشيدي انعكاسي و پخشا
پرتودهي گرمايي
باد
وسايل اندازه گيري
اندازه گيري تابش خورشيدي
پيرانومتر
مراقبت‌هاي لازم براي اثرات گراديان دما
مراقبت‌هاي لازم براي اثرات رطوبت و نم
مراقبت‌هاي لازم براي اثرات تابش مادون قرمز بر روي درستي پيرانومتر
نصب پيرانومتر در فضاي باز
استفاده از پيرانومترها در شبيه سازهاي پرتودهي خورشيدي
فاصله زماني كاليبراسيون پيرانومتر
اندازه گيري زاويه برخورد تابش خورشيدي مستقيم
اندازه گيري تابش حرارتي
اندازه گيري پرتودهي حرارتي در فضاي باز
تعيين پرتودهي خورشيدي در فضاي بسته و شبيه سازهاي خورشيدي
اندازه گيري
محاسبه
اندازه گيري هاي دما
اندازه گيري دماي ورودي سيال انتقال حرارت (tin)
دقت مورد نياز
نصب حسگرها
تعيين اختلاف دماي سيال انتقال حرارت
اندازه گيري دماي هواي اطراف (ta)
درستي مورد نياز
نصب حسگرها
اندازه گيري دبي مايع در كلكتور
سرعت باد
دقت مورد نياز
نصب حسگرها
كاليبراسيون
اندازه گيري هاي فشار
زمان طي شده
ثبات‌هاي داده‌ها/وسايل اندازه گيري
سطح كلكتور
ظرفيت سيال كلكتور
آرايش آزمون
ملاحظات عمومي
سيال انتقال حرارت
لوله كشي و اتصالات
پمپ و وسايل كنترل جريان
تنظيم دماي سيال انتقال حرارت
آزمون بازده حالت پايدار در فضاي باز
آرايش آزمون
آماده سازي كلكتور
شرايط آزمون
روش اجرايي آزمون
اندازه گيري ها
دوره آزمون (در حالت پايدار)
ارائه نتايج
محاسبه بازده كلكتور
انرژي خورشيدي گردآوري شده توسط كلكتور
اختلاف دماي كاهش يافته
نمايش ترسيمي بازده لحظه اي
بازده لحظه اي براساس سطح ناخالص كلكتور
بازده لحظه اي براساس سطح جذب كننده
تبديل ويژگي هاي آزمون عملكرد حرارتي
تعيين ظرفيت گرمايي موثر و ثابت زماني كلكتور
كليات
تعيين ظرفيت گرمايي
روش آزمون براي ثابت زماني كلكتور
محاسبه ثابت زماني كلكتور
ضريب تصحيح زاويه برخورد كلكتور
كليات
روشهاي آزمون
روش آزمون
محاسبه ضريب تصحيح زاويه برخورد كلكتور
تعيين افت فشار در كلكتور
كليات
آرايش آزمون
آماده سازي كلكتور
روش آزمون
اندازه گيري ها
افت فشار ايجاد شده توسط اتصالات
شرايط آزمون
محاسبه و نتايج آزمون
فصل سوم : استاندارد اتحاديه اروپا جهت تست كلكتور خورشيدي (EN 12975-2:2001)
تستهاي قابليت اطمينان
تست فشار داخلي جاذب
تست مقاومت در برابر دماي بالا
تست قرارگيري در مقابل پرتو
تست شوك حرارتي خارجي
تست شوك حرارتي داخلي
تست نفوذ باران
مقاومت در برابر يخ زدگي
تست بار مكانيكي
تست فشار مثبت روي پوشش كلكتور
تست فشار منفي اتصالات بين بدنه كلكتور و پوشش آن
تست فشار منفي تجهيزات نصب كلكتور
تست مقاومت در برابر ضربه
تست كارايي حرارتي كلكتور‌هاي گرم كننده مايع
كلكتور‌هاي با پوشش شيشه در شرايط يكنواخت با در نظر گرفتن افت فشار
نحوه اتصال و محل نصب
نحوه اتصال
زاويه شيب
جهت گيري كلكتور
وجود سايه در مقابل تابش مستقيم خورشيد
تشعشع پراكنده و بازتابي خورشيد
تابش حرارتي
سرعت هوا
ابزار و لوازم
ابزارهاي اندازه‌گيري تشعشع خورشيد
پيرانومتر
اندازه‌گيري زاويه تابش از تشعشع عمودي
ابزارهاي اندازه‌گيري تشعشع حرارتي
ابزارهاي اندازه‌گيري دما
اندازه‌گيري دماي ورودي سيال انتقال حرارت
اندازه‌گيري اختلاف دماي سيال انتقال حرارت
اندازه‌گيري دماي هواي محيط
اندازه‌گيري دبي سيال كلكتور
اندازه‌گيري سرعت هوا
اندازه‌گيري فشار
زمان سپري شده
ابزار ثبت داده‌ها
سطح كلكتور
ظرفيت حجمي كلكتور
سيال انتقال حرارت
لوله‌كشي و اتصالات
پمپ و ابزارهاي كنترل جريان
تنظيم دماي سيال انتقال حرارت
تست بازده جريان يكنواخت در فضاي آزاد
آماده‌سازي كلكتور
شرايط تست
روش انجام تست
اندازه‌گيري‌ها
مدت انجام تست (شرايط يكنواخت)
محاسبات بازده كلكتور
تعيين ظرفيت حرارتي موثر و ثابت زماني كلكتور
تعيين ظرفيت حرارتي موثر
روش تست براي ثابت زماني كلكتور
محاسبه ثابت زماني كلكتور
اصلاح كننده زاويه تابش كلكتور
روش انجام تست
محاسبه اصلاح كننده زاويه تابش
تعيين افت فشار در كلكتور
آماده سازي
روش انجام تست
اندازه‌گيري
افت فشار اتصالات
شرايط تست
محاسبه و ارائه نتايج
كلكتور‌هاي شيشه‌اي و بدون شيشه تحت شرايط شبه ديناميكي
طريقه و محل نصب كلكتور
ابزار و لوازم
طرح تست
تست بازده در فضاي آزاد
طرح تست
شرايط تست
روش تست
اندازه‌گيري‌ها
الزامات دستيابي به داده‌ها
مدت زمان انجام تست
توصيف روزهاي تست
وابستگي به زاويه شيب
دماي عملكردي پايين
متوسط دماي عملكردي
دماي عملكردي بالا
ارائه نتايج
مشخص نمودن پارامترها و محاسبه خروجي مفيد كلكتور
ابزار تشخيص پارامتر كلكتور
فصل چهارم : استاندارد آمريكا جهت تست كلكتور خورشيدي (ASHRAE 93: 1991)
تعاريف
الزامات
ابزار و لوازم
اندازه‌گيري تشعشع خورشيدي
راديومترها
تغيير واكنش نسبت به تغيير هواي محيط
واكنش نسبت به تغيير طيف
پاسخ غيرخطي
ثابت زماني پيرانومتر و پرهليومتر
تغييرات پاسخ نسبت به زاويه تابش
تغييرات پاسخ نسبت به شيب
ملاحظات جهت تاثير اختلاف دما
بازه‌هاي كاليبراسيون
اندازه‌گيري دما
روش‌ها
صحت و دقت
ثابت زماني
اندازه گير ياختلاف دما در طول كلكتور
اندازه‌گيري دبي كلكتور
ابزار يا ثبت كننده‌هاي داده
ابزار با مقياس اندازه‌گيري كوچك
ثبت كننده‌هاي داده
انتگرال گيرها
امپدانس ورودي
اندازه‌گيري فشار در كلكتورهاي مايع
زمان سپري شده
سرعت باد
روش انجام تست
كلكتور‌هاي خورشيدي
دماي محيط
تشعشع خورشيد
اندازه‌گيري اختلاف دما در طول كلكتور
اندازه‌گيري مضاعف دما
فشار در مدار تست و در طول كلكتور خورشيدي
دستگاه تامين شرايط مايع
ساير تجهيزات
شرايط باد – در فضاي آزاد
مراحل تست و محاسبات
كليات
معادلات عملكردي پايه
ثابت زماني كلكتور
اصلاح كننده زاويه تابش كلكتور
پروسه تست
شرايط تست در فضاي آزاد
حداقل تشعشع خورشيدي
حداكثر تغييرات تشعشع خورشيدي
تشعشع پراكنده
حدود دماي محيط
شرايط باد
نرخ سيال انتقال حرارت
تشعشع خورشيدي
تعيين تجربي ثابت زماني كلكتور
تعيين تجربي بازده حرارتي كلكتور
توزيع دماي ورودي
تعداد نقاط داده
شرايط يكنواخت
بازرسي وجود گرد و غبار و رطوبت
تعيين تجربي اصلاح كننده زاويه تابش
محاسبات ثابت زماني كلكتور
محاسبه بازده حرارتي كلكتور
محاسبه اصلاح كننده زاويه تابش
فصل پنجم : مقايسه استاندارد هاي تست كلكتور خورشيدي
مقايسه سه استاندارد 9806-1 ISO، EN 12975-2 وASHRAE 93
مقايسه دو استاندارد ISO 9806-1 و EN 12975-2
مراجع

فهرست اشكال:
نمونه اي از يك سيستم فعال خورشيدي به همراه تجهيزات و تاسيسات مورد نياز
انواع ديگري از كلكتور لوله خلايي و متمركز كننده
كلكتورتخت، مايع و هوايي
فرآيند حرارتي يك كلكتور صفحه تخت
كلكتور لوله اي تحت خلا
نمونه اي از يك كلكتور لوله خلا به همراه لوله حرارتي
بازده يك كلكتور در شدت تشعشع ها و اختلاف دماهاي مختلف
موقعيت‌هاي توصيه شده مبدل براي اندازه گيري دماهاي ورودي و خروجي سيال انتقال حرارت
مثالي از مدار آزمون بسته
مثالي از مدار آزمون باز
ثابت زماني كلكتور
ضرايب تصحيح نوعي زاويه برخورد K_θ
موقعيت‌هاي توصيه شده مبدل براي اندازه گيري دماهاي ورودي و خروجي سيال انتقال حرارت
مثالي از مدار آزمون بسته
مثالي از مدار آزمون باز
چيدمان سيستم بسته تست كلكتور خورشيدي وقتي كه سيال انتقال حرارت مايع است
چيدمان سيستم باز تست كلكتور خورشيدي وقتي كه سيال انتقال حرارت مايع است
چيدمان سيستم باز تست كلكتور خورشيدي وقتي كه سيال به طور مداوم تامين ميگردد
نمونه‌اي از نمودار بازده حرارتي
اصلاح كننده زاويه تابش براي سه كلكتور صفحه تخت خورشيدي فاقد روكش روي سطح جاذب

فهرست جداول:
انحراف مجاز پارامترهاي اندازه گيري شده در طول دوره اندازه گيري
مقادير فاكتورهاي وزني pi
نمادهاي به كار رفته در استانداردها

چكيده:
استفاده از استاندارد‌ها و رعايت حداقل كيفيت مورد انتظار در محصولات و خدمات مختلف امروزه در سراسر جهان رايج است، بطوريكه بسياري از صنايع بدون رعايت استاندارد‌ها مجاز به توليد يا ارائه خدمات نيستند. از انرژي خورشيد ميتوان به طرق مختلف، مثل توليد برق، گرمايش و سرمايش، توليد آب شيرين، تامين آب گرم و … استفاده نمود. در صنعت انرژي خورشيدي نيز همچون ساير صنايع، استاندارد‌هاي مختلفي تدوين شده است. در بخش گرمايش آب مصرفي برخي از استاندارد‌ها مربوط به تست و استفاده از سيستم‌ها و روش‌هاست و برخي ديگر از استاندارد‌ها به چگونگي تست كلكتور‌هاي خورشيدي كه جزء اصلي و نقطه آغازين تبديل انرژي خورشيدي به انرژي گرمايي است، پرداخته اند. در اين گزارش به مطالعه و بررسي سه استاندارد ISO، DIN و ASHRAE كه به ترتيب مربوط به استاندارد جهاني، اتحاديه اروپا و ايالات متحده آمريكا هستند پرداخته شده است و در پايان پارامتر‌هاي مختلف آن در قالب چند جدول مقايسه شده اند. لازم به ذكر است كه به دليل گستردگي و حجم زياد استاندارد‌ها، در اين گزارش تنها كلكتور‌هاي صفحه تخت مورد بررسي قرار گرفته اند.

مقدمه:
در جهان امروز، روند مصرف انرژي به سرعت در حال افزايش است و با توجه به محدوديت منابع فسيلي ضرورت استفاده از انرژي‌هاي تجديد پذير و پاك بر همگان روشن است. يكي از انواع انرژي‌هاي نو، انرژي خورشيدي است. كشور ايران در بين مدارهاي 25 تا 40 درجه عرض شمالي قرار گرفته است و در منطقه‌اي واقع شده كه به لحاظ دريافت انرژي خورشيدي در بين نقاط جهان در بالاترين رده‌ها قرار دارد. ميزان تابش خورشيدي در ايران بين 1800 تا 2200 كيلووات ساعت بر مترمربع در سال تخمين زده شده است كه البته بالاتر از ميزان متوسط جهاني است. در ايران بطور متوسط ساليانه بيش از 280 روز آفتابي گزارش شده است كه بسيار قابل توجه است. از اين انرژي ميتوان به طرق مختلف، مثل توليد برق، گرمايش و سرمايش، توليد آب شيرين، تامين آب گرم و … استفاده نمود.
امروزه لزوم رعايت استاندارد‌ها جهت دستيابي به بهترين كيفيت و اطمينان از دوام كالا يا خدمات بر همگان روشن است و صنعت انرژي خورشيدي نيز از اين امر مستثني نيست. به همين منظور كشور‌هاي مختلف استانداردهايي را براي تست ابزار و لوازم مورد استفاده در انرژي خورشيدي تدوين نموده اند كه در اين گزارش مورد بحث و بررسي قرار گرفته اند و در پايان بين آن ها مقايسه صورت گرفته است.

بازدید : 469
11 زمان : 1399:2

تعداد صفحات:136
نوع فايل:word
فهرست مطالب:
چكيده
بخش اول – مختصري درباره مترو
تاريخچه مترو در جهان
تاريخچه احداث متروي تهران
مزاياي احداث مترو
آثار اقتصادي
آثار اجتماعي
آثار فرهنگي
بخش دوم – تكتونيك و زمين شناسي تهران
تكتونيك تهران
مختصري بر جغرافياي تهران
زمين شناسي تهران
سازندهاي مختلف رسوبات آبرفتي تهران
ويژگي هاي سازند آبرفتي تهران
ويژگي هاي سازند آبرفت هاي كوارترنر كنوني
ويژگيي هاي سازند كهريزك
بخش سوم -انواع تونل و عوامل موثر در طراحي تونل مترو
مشكلات موجود
پارامترهاي موثر در طراحي مترو
تعريف تونل
مراحل تونل سازي
طبقه بندي تونل ها
تونل هاي حمل و نقل
تونل هاي صنعتي
تونل هاي معدني
ارزيابي ساختمان تونل
نشت زمين
شكل و ابعاد مقطع تونل
تونل هاي مترو
انتخاب مقاطع تونل متروي تهران
عوامل تعيين كننده روش هاي اجراي تونل
امتداد تونل ها
شيب تونل ها
تونل هاي مترو
توجيه امتداد محور تونل
حالتي كه تونل از طريق چاه حفر ميشود
احداث ايستگاه هاي نقشه برداري در تونل
كنترل تونل به هنگام حفر
بخش چهارم – روش هاي حفاري و ساخت تونل هاي مترو تهران
مناطق شهري
احداث تونل به روش كند و پوش
مناطق شهري
روشهاي اجرا
روش هاي ساخت تونل هاي متروي تهران
روش ترانشه باز
روش O.T (گودكني از سطح زمين)
روش جعبه‌اي (باكس)
روش نعل اسبي
روش C.C (حفاري در زمين)
مزيت روش ترانشه باز
عيب روش ترانشه باز
مشكل اساس در اين روش
آب بندي در روش ترانشه باز
عايق كاري مقطع تونل
روش ترانشه بسته
روش جديد اتريشي
مزاياي پاشيدن سريع بتن
گسيختگي خاك در روش جديد اتريشي
روش حفر و پوشش
روش تونل زني
روش اتريشي – ايراني
رابطه بين وسيله نگهداري و رفتار زمين
روش حفاري در نيمه شمالي خط يك متروي تهران
روش T.B.M
ماشين حفار ZOKOR
ماشين حفاري T.B.M
محاسن تونل سازي با ماشين آلات حفاري
معايب تونل سازي با ماشين آلات حفاري
بخش پنجم – عوامل موثر در نگهداري تونلهاي مترو
سيستم نگهداري اوليه
نيروهاي وارد بر پوشش تونل
فشارهاي وارد بر پوشش سازه‌هاي زير زميني
فشار زمين وارد بر تونل
فشار جانبي وارد بر پوشش تونل ها
فشار آب تحت الارضي
تحول در تونل
علل تحول جداره و پوشش تونل
بخش ششم – تاثير آب هاي زيرزميني بر ساخت تونلهاي مترو
سفره‌ آب زيرزميني
طرح زهكشي تونل ها و ايستگاه هاي توسعه شمال خط يك متروي تهران
طرح هاي اجرا شده قبلي در مسير خط يك متروي تهران
مطالعات انجام شده قبلي
آب هاي سطحي و هيدرولوژي
مخازن آب هاي زيرزميني تهران
ويژگي هاي هيدرولوژيكي منطقه
قنات ها
قنوات واقع در مسير توسعه خط 1 متروي تهران
بخش هفتم – روش هاي عايق بندي (ايزولاسيون) تونل هاي مترو در برابر نفوذ آب
روش سگمنت گذاري و تزريق پشت سگمنت
هدف از انجام عمل تزريق
كاربردهاي تزريق درچه مواردي است
انواع تزريق از نظر ساختار ديواره داخلي تونل
تعريف سگمنت و كليد و طرز قرارگيري آن ها در يك حلقه يا رينگ
ترتيب قرارگيري رينگ ها در داخل تونل مترو
طرز بندكشي و پركردن شكاف هاي بين رينگ ها و سگمنت ها
گمانه زدن – ترتيب گمانه ها در يك حلقه – طرز گمانه زني – مراحل گمانه زني
خالي كردن داخل گمانه و آماده سازي گمانه براي شروع كار تزريق
توضيح ميكسرها و همزن ها و كارشان
پمپ هاي توليد فشار و پمپ هاي فشار شكن و توضيح كار آن ها
تعريف اصطلاح خورند در كارهاي تزريق
توضيح توليد دوغاب و انواع آن
فشار تزريق و روش اندازه گيري و كنترل آن
دبي تزريق
شماره گمانه در رينگ
مرحله تزريق
شماره رينگ در تونل
مراحل انجام عمل تزريق
روش تزريق دوغاب به داخل گمانه و استفاده از پكرها
گرفتگي در مسير انتقال دوغاب و چگونگي بر طرف كردن آن
حداكثر زماني كه مي توان كار را بطور موقت تعطيل كرد
توضيح مواد افزودنيبه دوغاب و نقش هر يك از آن ها در كار تزريق
اندازه گيري و چك كردن غلظت دوغاب
تشريح عمل همگراسنجي
بيرون زدگي و نشتي آب و دوغاب در حين كار و چگونگي بر طرف كردن آن ها
استفاده از ماده شيميايي به نام Penetron كار در عايق بندي تونل
انجام تست آب در انتهاي كار براي اطمينان از عايق بندي تونل
روش عايق بندي (ايزولاسيون) در روش اتريشي
نتيجه گيري
منابع

چكيده:
يكي از مهم ترين اموري كه در كلان شهرها مطرح ميباشد، ايجاد شبكه‌هاي ارتباطي شهري و بين شهري است. متخصصان امر در اين زمينه تلاش هاي بسياري كرده‌اند تا راه كارهاي عملي اين اهداف شناسايي و اجرا شوند. از مهم ترين كارهاي توسعه شهري ايجاد و گسترش شبكه‌هاي حمل و نقل و داشتن سيستم ترافيكي كارآمد است كه نقش شريان هاي ارتباطي شهرها را ايفا ميكنند.
توجه به مسائل حمل و نقل و داشتن سيستم ترافيكي كارآمد است كه نقش شريان هاي ارتباطي شهرها را ايفا ميكنند. توجه به مسائل حمل و نقل شهري، ايجاد ترافيكي روان در سطح شهرها (‌خصوصاً تهران) و سامان بخشيدن به اين امور اهميتي فوق العاده دارد. گسترش سريع و بي رويه زيربناي شهرها از يك طرف و از طرف ديگر مسئله سنگيني ترافيك و اتلاف وقت شهروندان را سبب ميشود. براي كاهش مشكلاتي كه در بين اين مسائل وجود دارد راه حل هاي مختلفي پيشنهاد گرديده است. پراكنده كردن مراكز مختلف جذب جمعيت مثل وزارتخانه‌ها، شركت ها، مراكز تجاري و غيره خود جهت كاهش تمركز جمعيت در يك نقطه شهر كمك شايان ميكند. علاوه بر آن براي سرعت بخشيدن به امر حمل و نقل و نظر گرفتن راحتي مسافران ميتوان سطح خيابان‌ها و به خصوص بزرگراه ها را افزايش داد و با توجه به محدوديت زمين ميتوان از زيرزمين براي حركت وسائل نقليه استفاده نمود. ايجاد راه هاي مخصوص حركت اتوبوس ها، استفاده از تراموا، ترن هوايي و مترو از راه هاي عملي كاهش سنگين ترافيك در شهر ميباشد كه در بسياري از نقاط دنيا اجرا شده است.

بازدید : 479
11 زمان : 1399:2

تعداد صفحات:96
نوع فايل:word
فهرست مطالب:
چكيده
مقدمه
فصل اول
تحليلي بر ساختمان و اجزاي برج خنك كن
انواع برج هاي خنك كننده
برج هاي خنك كننده مرطوب – خشك
برج هاي خنك كننده مرطوب
كلاس بندي برج هاي خنك كننده مرطوب
سيستم خنك كننده باز
جلوگيري از تشكل رسوب
سيستم خنك كننده بسته
سيستم خنك كننده تركيبي باز و بسته
سيستم هاي خنك كننده خشك
انواع برج هاي خنك كننده
برج خنك كننده با جريان طبيعي
استخرهاي خنك كن
برج هاي با كوران طبيعي
برج خنك كننده مكانيكي
برج هاي دمنده
برج هاي مكنده
هزينه احداث برج ها و مقايسه آن ها با يكديگر
ساختمان برج هاي خنك كننده
حوضچه هاي بتني
لوله ها
توزيع كننده
حوضچه هاي فوقاني برج
ستون هاي برج
بادگيرها
تخته هاي بازيابي آب
تخته هاي پخش كننده آب (آكنه ها)
مشخصات و خصوصيات آكنه ها
دمنده ها يا مكنده ها
سازه ها و قطعات فرعي
مواد به كار رفته در ساختمان برج ها
چوب
آلومينيم
فولاد نرم گالوانيزه
پلاستيك
عوامل موثر در خنك كردن برج هاي خنك كننده
نقش شيميست در قسمت آب
سختي آب و انواع آن
رشد ميكرو ارگانيسم ها در سيستم برج هاي خنك كننده
خسارت هاي حاصل از جلبك ها در برج خنك كننده
نگهداري برج هاي خنك كننده
فصل دوم
معادلات حاكم بر كولينگ تاور
مراحل طراحي برج ها
بخش سازه
انواع برج هاي خنك كننده از لحاظ سازه اي
اجزا تشكيل دهنده برج خنك كننده بتني
پايداري برج هاي خنك كننده
انواع سخت كننده ها
هندسه برج خنك كننده
بارگذاري برج
بارگذاري باد
بارگذاري زلزله
انواع آناليز
نكات طراحي و جزئيات اجرايي
بخش مكانيكال طراحي
معادلات مربوط به بالانس جرم و حرارت
فصل سوم
محاسبات عددي و كاربردي براي تعيين ظرفيت
محاسبه دبي آب
سايز لوله آب
محاسبه دبي هوا
بازده برج
محاسبه مقدار آب جبراني
انتخاب پمپ
محاسبه توان پمپ
معادلات مربوط به فن
پكينگ ها
مفهوم واژگان و علائم
نتيجه گيري
پيوست ها
منابع
لاتين

فهرست اشكال:
نمايي از برج هاي خنك كن مورد استفاده
نمايي از داخل يك برج خنك كن معمولي
استفاده برج خنك كن در سيستم هاي خنك كننده
برج خنك كن خشك
يك نمونه از پكينگ ها
يك نوع فن مكنده در برج خنك كن
بيان شماتيك دماي Range,Approach
شماتيك تغييرات در برج خنك كن
بالانس جرمي بخار آب در هوا
بالانس هوا و آب در بالا رفتن هوا و پايين ريختن آب
انتقال جرم و حرارت از سطح نازك آب به هوا
بالانس انرژي در حركت رو به بالاي هوا و رو به پايين آب
مشخصه عملكرد برج و دما
دياگرام دما – آنتالپي مخصوص
يك نمونه منحني مشخصه برج
منحني آنتالپي – دما
تغييرات فاكتور اندازه برج نسبت به دماي حباب مرطوب
تغييرات فاكتور اندازه برج نسبت به دماي Approach
تغييرات فاكتور اندازه برج نسبت به دماي Range
تغييرات فاكتور اندازه برج نسبت به فاكتور بار حرارتي
آب جبراني برج (make Up)
هد استاتيك
منحني مشخصه ها پمپ
منحني مشخصه پمپ و افت فشار
نمونه فن نصب شده در كولينگ تاور پالايشگاه
منحني مشخصه فن
نمودار فشار كلي – جريان
برج خنك كن با پكينگ و بدون پكينگ

فهرست جداول:
تعيين دبي از تناژ برج
محدوده مجاز سرعت در دستگاه ها
حداكثر دبي مجاز در لوله
محاسبه دبي هوا از روي دبي آب
مقدار آب جبراني
فشار بارومتريك و فشار بخار آب
محدوديت در توان قابل تحمل هر تيغه
محدوديت در تعداد تيغه
نوع پكينگ بر حسب L/G

چكيده:
با توجه به رشد روزافزون نياز بشر به انرژي، به خصوص انرژي فسيلي و همچنين محصولات پتروشيمي و رقابتي شدن اين بازار، بحث بازده و صرفه اقتصادي در پروسه كار پالايشگاه ها بسيار مهم ميباشد. براي آن كه تمام دستگاه هاي به كار رفته در پالايشگاه در شرايط بهره وري بالا كار كنند، نيازمند يك شرايط مناسب ميباشند كه از جمله آن ميتوان به فاكتور دما اشاره كرد. در اكثر جاها آب نقش خنك كنندگي را دارد و چون منابع آبي محدود ميباشند، نياز به وجود دستگاهي پديد مي آيد كه با كمترين هدر رفت آب، آن را مجددا به دماي مناسب برساند. اين جا است كه نام برج هاي خنك كن(كولينگ تاور) به گوش ميرسد. برج خنك كن علاوه بر كاهش هزينه ها در بخش آب، به كمتر آلوده شدن محيط زيست كمك شاياني مي كند. امروزه از برج هاي خنك كن در پالايشگاه ها بعنوان بخش حياتي سيستم ياد مي شود كه عدم كارآيي آن موجب ايجاد فاجعه خواهد شد.

مقدمه:
در اكثر كارخانجات كوچك و بزرگ از جمله پالايشگاه ها از مهم ترين و اساسي ترين دستگاه ها ميتوان انواع برج هاي خنك كننده را نام برد. برج خنك كننده دستگاهي است كه با ايجاد سطح وسيع تماس آب با هوا تبخير را آسان ميكند و باعث خنك شدن سريع آب ميگردد. عمل خنك شدن در اثر از دست دادن گرماي نهان تبخير انجام ميگيرد، در حاليكه مقدار كمي آب تبخير ميشود و باعث خنك شدن آب ميگردد. بايد توجه داشت كه آب مقدار اندكي از گرماي خود را از طريق تشعشع و در حدود 1/4 آن را از راه هدايت و جابجايي و بقيه را از راه تبخير از دست ميدهد.
برج هاي خنك كننده علاوه بر آب به منظور خنك كردن سيالاتي ديگر در صورت لزوم مورد استفاده واقع ميشود. با توجه به اين كه برج هاي خنك كننده معمولاًً حجيم ميباشند و به علت پاشيدن آب در محيط اطراف خود و خرابي تجهيزات آن را معمولا در انتهاي فرآيند نصب ميكنند.
برج ها با توجه به شرايط فيزيكي و شيميايي خاص خود دچار مشكلاتي ميشوند ولي معمولا زماني كه لازم است تا اين مشكلات برج را از كار بياندازد طولاني است. ولي عملا اجتناب ناپذير است.
بيشتر دستگاه هاي خنك كن از يك مدار بسته تشكيل شده اند كه آب در اين دستگاه ها نقش جذب، دفع و انتقال گرما را به عهده دارد، يعني گرماي به وجود آمده توسط ماشين را جذب و از دستگاه دور ميسازد. اين كار باعث ادامه كار يكنواخت و پايداري دستگاه ميشود.
در دستگاه هايي كه به دلايلي مجبوريم آب را بگردش در آوريم و يا به كار ببريم بايد به نحوي گرماي آب را دفع كرد. با بكار بردن برج هاي خنك كننده اين كار انجام ميگيرد. در تمام كارخانه ها تعداد زيادي دستگاه هاي تبديل حرارتيوجود دارد كه در بيشتر آن ها آب عامل سرد كنندگي است.

بازدید : 455
11 زمان : 1399:2

تعداد صفحات:254
نوع فايل:word
فهرست مطالب:
چكيده
فصل اول
مقدمه
تاريخچه سيستم ABS
سيستم ABS چيست؟
اصول كاركرد سيستم ABS
مزاياي ABS
مسافت هاي توقف
توقف در خط مستقيم
كنترل فرمان
احتياط هاي پيشگيرانه در سيستم ترمز ضد قفل (ABS)
اصطلاحات مربوط به ABS
سيستم هاي باز و بسته
سيستم هاي مجتمع و غير مجتمع
مدارهاي هيدروليكي
مدارهاي جلو – عقب مجزا
مدارهاي قطري مجزا
كانال هاي ABS
سيستم هاي يك كاناله
سيستم هاي سه كاناله
سيستم هاي چهار كاناله
اجزاي سيستم ABS
واحد كنترل الكترونيكي
واحد كنترل هيدروليكي
پمپ ها
سيلندر اصلي
سلونوئيدها
انباره ها و اكومولاتورها
سنسورهاي سرعت
ساير تجهيزات ورودي واحد كنترل الكترونيكي
سوئيچ شتاب جانبي
سنسور شتاب جانبي
سوئيچ چراغ ترمز
سوئيچ سطح روغن ترمز
عملكرد فعال كننده ABS
وضعيت ترمز معمولي (ABS فعال نيست)
وضعيت ترمز اضطراري (ABS فعال است)
حالت كاهش فشار
وضعيت ثابت نگه داشتن فشار
وضعيت افزايش فشار
ABS ECU
كنترل سرعت چرخ ها
سيستم هاي تويوتا
سيستم ABS چرخ عقب
اجزاي سيستم
عملكرد سيستم
سيستم ABS چهارچرخ تويوتا
اجزاي سيستم
عملكرد سيستم
ترمز معمولي
ترمز گيري ضد قفل
اخطار
تعويض اجزاء
سيستم هاي كنترل كششي ترمز
وظيفه سيستم
طراحي سيستم
سنسورهاي سرعت چرخ
مدولاتور هيدروليكي
ترمز چرخ ها
نحوه عملكرد سيستم
انواع سيستم TCS
سيستم هاي الكترونيكي پايداري خودرو (ESP)
وظيفه سيستم
طراحي سيستم
نحوه عملكرد سيستم
فصل دوم
كمربند ايمني
مقدمه
تاريخچه كمربند ايمني
دليل استفاده كم از كمربند ايمني
چگونگي عملكرد كمربند ايمني
نحوه عملكرد سيستم
تسمه هاي سيستم
ضرورت استفاده از كمربند ايمني
سعي در نصب كمربند ايمني براي صندلي هاي عقب
حركت سرنشين در خودرو
مكانيزم هاي كمربند ايمني
فصل سوم
بررسي ايمني شيشه هاي خودرو
هدف
تعاريف و اصطلا حات
شيشه لايه دار نوع A
شيشه لايه دار نوع B
شيشه آبديده
منطقه آزمون (مناطق a,b)
منطقه حاشيه (منطقه c)
منطقه ديد a
انحراف نور
تصوير ظاهري
واپيچش نور
يك دقيقه قوسي
ويژگي ها
ميزان عبور نور مرئي
واپيچش نور
شناسايي رنگ ها
كاهش نوري بعد سايش
مقاومت در برابر دماي آب جوش
مقاومت در برابر رطوبت
مقاومت در برابر ضربه مدل سر
مقاومت در برابر نفوذ گلوله (گلوله 40+225 گرمي)
مقاومت در برابرضربه گلوله (گلوله 40+225 گرمي)
شيشه لايه دار نوع B
شيشه آبديده
خرد شدگي
فصل چهارم
Air bag
آشنايي با ايربگ
انواع ايربگ
ايربگ جلو
ايربگ راننده
ايربگ مخصوص سرنشين
ايربگ جانبي
ايربگ محافظ سر
ايربگ محافظ زانو
بالشتك هاي هواي باهوش
خطرات ايربگ
راه هاي كاهش صدمات
خطرات ايربگ براي افراد پير
خطرات ايربگ براي افراد كوتاه قد
نكات ديگر در مورد خطرات ايربگ
منبع انرژي سيستم ايربگ
سيستم ايربگ با منبع انرژي گاز فشرده
مخزن تحت فشار
شير كنترل
مانيفولد
پخش كننده
بالشتك هوا
منبع انرژي توليد كننده گاز
عملكرد انفجاري سيستم توليد كننده گاز
سيستم فرمان ايربگ
مشخصات سيستم فرمان عمل ايربگ
طرح شماتيك سيستم عمل فرمان
طراحي بالشتك هوا
كليات بالشتك هوا
شبيه سازي بالشتك هوا
فرضيات موجود طراحي بالشتك هوا
معادلات كنترل كننده فرايند
معادلات قبل از برخورد
معادلات بعد از برخورد
نتايج تحليلي حاصل از مدل رياضي بالشتك هوا
خلاصه زمان بندي عمل ايربگ
بهينه سازي توليد كننده گاز ايربگ
پيشگيري از عملكرد بي موقع يا عدم عملكرد ايربگ
پيشگيري از عملكردن بي موقع سيستم
جلوگيري از عدم عملكرد سيستم ايربگ
فصل پنجم
سپر ايمني و ايمني بدنه
سپر ايمني
ايمني بدنه خودرو
ايمني خارجي خودرو
تغيير شكل بدنه خودرو پس از وارد آمدن ضربه
ايمني داخلي خودرو
فصل ششم
تداخل و نويز در خوررو
مقدمه
منابع نويز خودرو
موتور
ارتعاش داخلي خودرو
ارتعاشات خارجي موتور
نويز مكانيكي
نويز احتراق
نويز سوخت پاش
نويز سيستم هاي ورودي هوا و خروجي دود
خط انتقال قدرت
نويز گاردان
كنترل نويز
روش هاي كنترل
نويز ارتعاشي
لايه هاي ويسكوالاستيك
لايه هاي ويسكوالاستسك نامقيد (آزاد)
نويز اكوستيكي
موانع صدا
نتيجه گيري
پيشنهادات
سيستم وفقي كنترل نويز
مقدمه
توصيف سيستم
پيشرفت هاي نوين
سيستم ارتباطي و صوتي اتومبيل
مقدمه
سيستم هاي صوتي اتومبيل
شناسايي برنامه
فركانس هاي بديل
نام برنامه
اطلاعات مربوط به عبور و مرور
برنامه عبور و مرور
اعلام خبرهاي عبور و مرور
تلفن همراه
كاهش تداخل
فصل هفتم
ارگونومي سرنشين در خودرو
مقدمه
آنتروپومتري
اهداف ارگونومي
كاربردهاي ارگونومي
طراحي فضاي داخلي و اندازه هاي آن
اركان اصلي ابعاد خودرو
صندلي راننده
تكنولوژي در ساخت صندلي خودرو
سيستم ASCT
سيستم تهويه فعال و چند محوره پشت صندلي
كنترل گرها
فرمان خودرو
اهرم تعويض دنده
پدال ها
نمايشگرها
فصل هشتم
ساير تجهزات رفاهي و ايمني خودرو
سيستم كنترل الكترونيكي انتقال قدرت
وظيفه سيستم
طراحي و نحوه عملكرد سيستم
عملگرها
محدوده هاي كنترل
سيستم كنترل انتقال دنده
سيستم قفل كن مبدل گشتاور
سيستم كنترل كيفيت تغيير دنده
سيستم هاي اطلاعاتي
سيستم هاي ناوبري و هدايت خودرو
وظيفه سيستم
طراحي سيستم
نحوه عملكرد سيستم
سنسورهاي سرعت چرخ
سنسورهاي جاذبه اي زمين
سيستم هاي مكان ياب ماهواره اي
انتخاب موقعيت مقصد
حافظه سيستم
محاسبات مسير
توصيه هاي انتخاب مسير و جهت از طرف سيستم
سيستم هاي اطلاعاتي خودرو
وظيفه سيستم
طراحي سيستم
نحوه عملكرد
ورودي سيستم
خروجي اطلاعات
سيستم هاي پارك خودرو
وظيفه سيستم
طراحي سيستم
نحوه عملكرد سيستم
اصول اندازه گيري
عملكرد سيستم
اجزاء سيستم
سنسورهاي آلتراسونيك
طراحي سيستم
مشخصات نحوه انتقال و دريافت اطلاعات
المنت هاي اعلام و اخطار و نمايش اطلاعات
صفحه نمايشگر
اخطارهاي صوتي
محاسبات مقدار فاصله
سيستم هاي لامپ هاي جلو
لامپ هاي ليترونيك
وظيفه سيستم
طراحي سيستم
نحوه عملكرد
الگوي روشنايي
لامپ هاي گازي Xenon
واحد كنترل الكترونيك
انواع سيستم
لامپ هاي پروجكشن PES
لامپ هاي انعكاسي
لامپ هاي Bi- Litronic
سيستم كنترل سطح نور لامپ هاي جلو
وظيفه سيستم
طراحي و نحوه عملكرد سيستم
سيستم استاتيك
سيستم ديناميك
سيستم هاي تميز كننده
سيستم هاي شيشه شوي و برف پاك كن
وظيفه و نيازمندي هاي سيستم
طراحي سيستم
نحوه عملكرد سيستم
سيستم هاي شيشه شوي و برف پاك كن
سيستم هاي شيشه شوي
سيستم هاي برف پاك كن و شيشه شوي
سيستم هاي تميز كننده چراغ هاي جلو
وظيفه سيستم
طراحي و نحوه عملكرد سيستم
سيستم شيشه شوي فشار بالا
استانداردهاي سيستم
سنسورهاي باران و آلودگي
سيستم هاي ضد سرقت خودرو
سيستم هاي قفل مركزي درها
وظيفه سيستم
نحوه عملكرد
سيستم هاي آلارم (هشدار دهنده)
وظيفه سيستم
طراحي و نحوه عملكرد
سيستم هاي اوليه
حفاظت از خودرو توسط امواج آلتراسونيك
سيستم هاي محافظت كننده از سرقت چرخ ها و يدك كشي خودرو
سيستم هاي ايموبيلايزر
وظيفه سيستم
طراحي و نحوه عملكرد سيستم
سيستم هاي الكتريكي ايموبيلايزر
سيستم هاي ايموبيلايزر الكترونيكي
سيستم هاي فعال و غير فعال كننده
سيستم هاي تنظيم كننده ميل فرمان
طراحي سيستم
نحوه عملكرد
سيستم هاي تنظيم كننده صندلي
وظيفه سيستم
طراحي سيستم
نحوه عملكرد سيستم
سيستم الكتريكي تنظيم صندلي
تنظيمات قابل برنامه ريزي
مبدل هاي كاتاليتيكي
آلاينده هاي خروجي توسط موتور
آلاينده هاي اصلي موتور خودروها
گاز نيتروژن
دي اكسيد كربن
بخار آب
مونوكسيد كربن
هيدروكربن ها يا تركيب هاي فرار شيميايي
اكسيدهاي نيتروژن
اساس كار و نحوه عملكرد مبدل هاي كاتاليتيكي در كاهش آلاينده ها
كاتاليست كاهش دهنده آلودگي
كاتاليست اكسيد كننده
سيستم كنترل
لاستيك در خودروها
ساختمان لاستيك
مواد تشكيل دهنده لاستيك
كائوچو
دوده
سيم
محافظ هاي شيميايي
وظايف لاستيك
ساختار لاستيك
بدنه (منجيد)
ديواره
رويه يا آج لاستيك
كمربند لاستيك
طوقه لاستيك
انواع ساختار لاستيك
لاستيك هاي باياس
لاستيك هاي راديال
ويژگي هاي لاستيك هاي راديال
لاستيك هاي تيوبلس
مزايا
معايب
لاستيك هاي زاپاس
منابع و مأخذ

فهرست اشكال:
جريان روغن در سيستم ترمز ضد قفل بسته مجهز به بوستر هيدروليكي
مقاطع برش خورده سيلندر اصلي ABS مجتمع
نيروهاي ديناميكي جانبي خودرو بدون سيستم ESp
نيروهاي ديناميكي جانبي خودرو مجهز به سيستم ESp
سيستم كنترل ESp و موقعيت هاي نصب اجزا
سيستم هاي حفاظتي سرنشينان همراه با سفت كنهاي كمربندهاي ايمني و كيسه هاي هواي خودرو
سفت كن كمربند
شتاب سنج مبتني بركرنش سنج

فهرست جداول:
علامت گذاري شيشه هاي ايمني
حداكثر ميزان انحراف نور در شيشه هاي ايمني اتومبيل
شناسايي رنگ ها
كاهش نوري بعد از سايش
مقاومت در برابر رطوبت
مقاومت در برابر ضربه مدل سر
مقاومت در برابر ضربه مدل سر در حالتي كه نمونه مدل اصلي نباشد
مقاومت در برابر نفوذ گلوله
مقاومت در برابر ضربه گلوله – مخصوص شيشه هاي جلو
مقدار مجاز خورده شيشه جدا شده از ميان لايه نمونه
مقاومت در برابر ضربه – مخصوص شيشه هاي جانبي و سقفي
خردشدگي

چكيده:
با پيشرفت تكنولوژي و صنعت در زمينه هاي مختلف، شايد بتوان گفت صنعت خودرو يكي از مواردي ميباشد كه پيشرفت هاي قابل توجهي نموده است، چرا كه اين صنعت به دليل ويژگي هاي خاص و هدف آن كه در درجه اول ايجاد آسايش و ايمني براي سرنشينان خودرو است، همواره سعي نموده از جديدترين تكنولوژي ها در قسمت هاي مختلف خودرو بهره مند شود. خصوصا تكنولوژي هايي كه ضريب ايمني و آسايش سرنشينان آن را افزايش دهد.
علاوه بر اين شايد بتوان گفت علاوه بر اين به دليل تاثير پذيري قابل توجهي كه مجوع قطعات مختلف خودرو بر روي هم دارند. يكي از ويژگي هاي ديگر اين صنعت ايجاد هماهنگي بين سيستم هاي مختلف اين ميباشد. بعنوان مثال تاثير پذيري سيستم هاي كم ولتاژ الكتريكي مانند سيستم راديوي در برابر سيستم جرقه زني كه داراي ولتاژ بالاي Ac ميباشد. در اين پروژه سعي شده است در مورد سيستم هاي ايمني كه نقش اساسي در ايمني خودرو و رفاه سرنشينان ايفا ميكند بررسي گردد.

مقدمه:
متوقف ساختن خودرو مهمتر از به حركت درآوردن آن است. خودرويي كه روشن نشود، ممكن است راننده اش را خشمگين سازد ولي وقتي به راه افتاد و در مسير عبور و مرور قرار گرفت اگر ترمز آن معيوب باشد و يا راننده نتواند به درستي از ترمز آن استفاده كند، چه بسا ممكن است به صورت دام مرگ درآيد.
ترمز ناگهاني و قفل شدن چرخ ها مهم ترين خطريست كه خودرو را تهديد مينمايد. قفل شدن چرخ ها از دو جهت براي خودرو خطرناك است، اين وضعيت در بسياري از مواقع فاصله ترمز گيري را افزايش داده و مهم تر از آن كنترل فرمان چرخ ها نيز از اختيار راننده خارج ميشود، خصوصاً در جاده هاي خيس و برفي يا يخ زده كه خطر قفل شدن چرخ ها بيشتر وجود دارد، نياز به سيستمي كه بتواند ترمز چرخ ها را كنترل كرده و از ليز خوردن چرخ ها جلوگيري نمايد، بيش از پيش احساس ميشود.

بازدید : 496
11 زمان : 1399:2

تعداد صفحات:97
نوع فايل:word
فهرست مطالب:
چكيده
مقدمه
انواع توربين هاي بادي
توربين هاي بادي با محور چرخش عمودي
توربين هاي بادي با محور چرخش افقي
توربين هاي بادي با محور چرخشي عمودي
توربين هاي بادي با محور چرخشي افقي
اين توربين‌ها چگونه كار ميكنند؟
نحوه كاركرد توربين هاي بادي
اجزاي اصلي توربين
فصل اول
انواع توربين هاي بادي
انواع كاربرد توربين هاي بادي
كاربردهاي غير نيروگاهي
پمپ هاي بادي آبكش
تامين برق جزيره هاي مصرف
شارژ باتري
كاربردهاي نيروگاهي
انرژي باد و محيط زيست
تعاريف اوليه
گشتاور پيچشي
بررسي روش تحليل بازو
نيروهاي وارده
بحث تعدد مجهولات و راه حل آن
تحليل استاتيكي
مساله طراحي اجزا بازو
انتخاب ماده
فصل دوم
محاسبات توان و نيرو در پره
محاسبه توان نيروي باد
معرفي نمونه‏ هاي ساخته شده
آزمايش انواع پره هاي ساونيوس در تونل باد
حل عددي
مدل اغتشاشات
نحوه حل معادلات حاكم بر جريان هوا
نتايج
فصل سوم
پيش بيني عملكرد و بررسي تلفات كمپرسور محوري توربين گاز بر مبناي مدلسازي يك بعدي و مقايسه آن با نتايج تجربي
مدل سازي يك بعدي
روش مدل سازي
تشريح الگوريتم حل و محاسبه پارامترهاي نسبي و مطلق جريان
تلفات انرژي
افت هاي مختلف كمپرسور جريان محوري
افت هاي گروه 1
افت هاي گروه 2
افت هاي گروه 3
بازده آيزنتروپيك
افت پروفيل پره
افت جريان ثانويه
تحليل لايه مرزي ديواره
افت انتهاي ديواره
افت نشتي نوك پره
پيش بيني سرج و استال در كمپرسور
نتايج حاصل از مدلسازي
فصل چهارم
جمع بندي و نتيجه‌گيري
مراجع

فهرست اشكال:
روتور سيكلوژيرو
روتور داريوس
روتور ساونيوس
روتور ساونيوس نيم‏ دايره
منحني پره روتورهاي مورد آزمايش
مقايسه ضريب توان روتورهاي I تا III
مقايسه ضريب توان روتورهاي IV تا VI
مقايسه ضريب توان كل، در روتورهاي I تا VI
ضريب توان روتور I در اعداد رينولدز مختلف
ضريب توان روتورIV در اعداد رينولدز مختلف جريان
مقايسه ضريب توان متوسط روتورهاي مختلف بر حسب عدد رينولدز جريان
بردارهاي سرعت اطراف روتور I
بردارهاي سرعت اطراف روتور V
گشتاور روتور ساونيوس نوع I براي سرعت هاي مختلف باد
گشتاور روتور ساونيوس نوع II براي سرعت هاي مختلف باد
گشتاور روتور ساونيوس نوع IV براي سرعت هاي مختلف باد
گشتاور روتور ساونيوس نوع Vبراي سرعت هاي مختلف باد
مقايسه گشتاور خروجي روتور هاي مختلف در سرعت باد 12 متر بر ثانيه
مقايسه نسبت گشتاور به مجذور سرعت در روتور I
شماتيك فرآيند مدلسازي
شكل شماتيك مقاطع مختلف كمپرسور محوري
نمايش افت ها در دياگرام انتالپي-انتروپي
نمودار نسبت فشار كمپرسور بر حسب دبي جرمي در دورrpm 11230 و مقايسه با داده هاي تجربي ناسا در كمپرسور جريان محوري دو طبقه
نمودارنسبت فشار كمپرسور برحسب دبي جرمي در دورهاي مختلف كمپرسور جريان محوري دو طبقه
نمودار راندمان برحسب دبي جرمي در دورهاي مختلف در كمپرسور جريان محوري دو طبقه
نمودار راندمان برحسب نسبت فشار در دورهاي مختلف در كمپرسور جريان محوري دو طبقه
نمودار توزيع افت هاي مختلف در دور rpm11230 در كمپرسور جريان محوري دو طبقه

چكيده:
پروِژه حاضر به بررسي نيروها و گشتاورهاي وارد بر پره هاي توربين بادي پرداخته است.
در ابتدا نحوه عملكرد توربين بادي و انواع آن مورد بررسي قرار گرفته است. سپس روابط نيرو و گشتاور از چندين منظر مورد توجه قرار گرفته است.
در نهايت از بحث مورد نظر نتيجه گيري به عمل آمده است.

توربين هاي بادي با محور چرخشي عمودي:
توربين‌هاي بادي با محور عمودي نظير (ساوينوس، داريوس، صفحه‌اي و كاسه‌اي …) از دو بخش اصلي تشكيل شده‌اند. يك ميله اصلي كه رو به باد قرار ميگيرد و ميله‌هاي عمودي ديگري كه عمود بر جهت باد كار گذاشته ميشوند. اين توربين شامل قطعاتي با اشكال گوناگون بوده كه باد را در خود جمع كرده و باعث چرخش محور اصلي ميگردد. ساخت اين توربين بسيار ساده است ولي بازده پاييني دارد. در اين نوع توربين ها يك طرف توربين باد را بيشتر از طرف ديگر جذب ميكند و باعث ميشود سيستم لنگر پيدا كرده و بچرخد. نتيجه اين نوع طراحي اين است كه سرعت چرخش سيستم دقيقاً با سرعت باد برابر بوده و در مناطقي كه سرعت باد كم است، چندان كارآمد نيست. يكي از مزاياي آن وابسته نبودن سيستم به جهت وزش باد ميباشد.
توربين هاي بادي با محور چرخشي افقي
اين نوع توربين‌ها نسبت به مدل با محور عمودي رايج‌تر ميباشد، توربين‌هاي بايد با محور افقي پيچيده‌تر و گران‌تر از نوع قبلي هستند و ساخت آن ها هم مشكل‌تر است ولي راندمان بسيار بالايي دارند. در همه سرعت‌ها حتي سرعت‌هاي پايين باد هم كار ميكنند و در انواع پيشرفته‌تر ميتوان جهت آن ها را با جهت وزش باد تنظيم كرد. نماي ظاهري اين توربين ها ۳ يا در مواردي ۲ پره است كه روي يك پايه بلند نصب شده‌اند. اين پره‌ها همواره در جهت وزش باد قرار ميگيرند.
اين توربين‌ها چگونه كار ميكنند؟
مراحل كار يك توربين كاملاً برعكس مراحل كار يك پنكه است. در پنكه انرژي الكتريسيته به انرژي مكانيكي تبديل شده و باعث چرخيدن پره ميشود. در توربين‌ها، چرخش پره‌ها انرژي جنبشي باد را به انرژي مكانيكي تبديل كرده، سپس به الكتريسيته تبديل ميشود. باد به پره‌ها برخورد ميكند و آن ها را مي‌چرخاند. چرخش پره‌ها باعث چرخش محور اصلي ميشود كه اين محور نيز به يك ژنراتور برق متصل است. چرخش اين ژنراتور برق متناوب توليد ميكند.
توربين‌هاي بايد عمودي امروزه ميتوانند بين ۵ تا ۶۵۰۰ كيلووات برق توليد كنند. يك توربين بادي مستقل با سايز كوچك ميتواند مصرف يك خانه يا انرژي مورد نياز براي پمپ كردن آب از چاه را تامين كند، ولي توربين‌هاي سايز بزرگتر براي توليد برق و تزريق آن به شبكه سراسري مورد استفاده قرار ميگيرند.

بازدید : 463
11 زمان : 1399:2

تعداد صفحات:74
نوع فايل:word
فهرست مطالب:
چكيده
مقدمه
فصل اول : كنترل الكترونيكي ديزل
نگاه اجمالي به سيستم
الزامات
بخش هاي سيستم
پردازنده اطلاعات
حسگرها و نشانگرهاي مقدار خواسته راننده
عملگرها
فصل دوم : واحد كنترل الكترونيكي
وضعيت عملكرد
طرح و ساختار
پردازش داده ها
سيگنال‌هاي ورودي
سيگنال‌هاي ورودي آنالوگ
سيگنال‌هاي ورودي ديجيتال
سيگنال‌هاي ورودي به شكل پالس
آماده‌سازي سيگنال
پردازش سيگنال
حافظه برنامه
حافظه داده‌ها
ASIC
مدول كنترل
سيگنال‌هاي خروجي
سيگنال‌هاي كليدزني
سيگنال‌هاي PWM
ارتباطات داخل پردازنده
سيستم‌ عيب‌ يابي
كنترل سنسورها
شناخت عيب
برطرف كردن عيب
عملكرد EDC
تنظيم شرايط كاركرد
مقدار سوخت در حالت استارت
شرايط حركت خودرو
تنظيم دور آرام
كنترل كاركرد آرام
كنترل سرعت حركت خودرو
تنظيم مقدار تزريق
تصحيح ارتفاع
خاموشي سيلندر
خاموش كردن موتور
تبادل اطلاعات
مداخله خارجي در تنظيم مقدار سوخت تزريقي
سيستم ضد سرقت الكترونيكي
سيستم تهويه
پردازنده كنترل شمع پيش گرمكن
انتقال اطلاعات به سيستم هاي ديگر
نگاهي به سيستم
انتقال سنتي اطلاعات
انتقال داده‌ها به صورت CAN
حوزه‌هاي كاربرد
استفاده از مولتي پلكس
كاربرد در ارتباط بيسيم و متحرك
كاربردهاي عيب‌ يابي
كاربرد زمان واقعي يا همزمان (Real time)
جفت كردن پردازنده
آدرس‌دهي مربوط به محتوا
اولويت‌ بندي
توزيع گذرگاه بين پردازنده‌ها
قالب پيام
ابتداي فريم
فيلد تعيين اولويت
فيلد كنترل
فيلد داده يا اطلاعات
فيلد CRC
فيلد ACK
پايان فريم
عيب‌ يابي يكپارچه
استاندارد سازي
فصل سوم : حسگرها (Sensors)
كاربردهاي خودرويي
حسگرهاي EDC
حسگرهاي مجتمع
حسگرهاي دما
كاربرد
حسگر دماي موتور
حسگر دماي هوا
حسگر دماي روغن موتور
حسگر دماي سوخت
ساختار و عملكرد
حسگرهاي فشار از نوع ميكرو مكانيكي
كاربرد
حسگر فشار هواي ورودي و يا فشار مانيفولد هوا
حسگر فشار محيط
حسگر فشار روغن و سوخت موتور
ساختار
عملكرد
حسگرهاي زاويه و دور موتور از نوع القايي
كاربرد
ساختار و نحوه كار
حسگر مرحله از نوع هال HALL
كاربرد
ساختار و طرز كار
اصل ديفرانسيلي (تفاضلي) هال
حسگر ميله‌اي هال
خروجي ديجيتال
حسگرهاي پدال گاز
كاربرد
ساختار و نحوه كاركرد
سوييچ دور آرام و افت دور
پتانسيومتر دوم
اندازه گير جرم هوا از نوع لايه داغ (فيلم داغ) HFM5
كاربرد
ساختار
طرز كار
فصل چهارم : عملگرها (Actuators)
عملگرهاي الكترونيوماتيك (برقي – بادي)
عملگر تقويت فشار
شير EGR
دريچه گاز
دريچه مانيفولد ورودي
تغيير دهنده چرخش هوا
سيستم هاي ترمز
ترمز موتور
ترمز موتور اضافه
ريتاردر (Retarder)
ريتاردر (كاهنده) هيدرو ديناميك
ريتاردر الكترو ديناميك
كنترل پروانه FAN
سيستم هاي كمك استارت
پيش گرمايش هواي مكشي
شمع شعله‌اي
گرمايش الكتريكي
شمع پيش گرمكن
واحد كنترل برافروختن شمع
ترتيب عملكردها
نتيجه گيري نهايي
پيشنهادها
فهرست منابع و مراجع
واژه نامه انگليسي به فارسي

فهرست اشكال:
اجزاي اصلي EDC
نگاه اجمالي اجزاي EDC براي پمپ هاي تزريق سوخت رديفي (خطي)
نگاه اجمالي اجزاي EDC براي پمپ هاي توزيع كننده VE..EDC مارپيچ (هليكس) و كنترل دريچه (مجرا)
نگاه اجمالي اجزاي EDC براي پمپ هاي توزيع كننده كنترل شير برقي VE..MV,VR
نگاه اجمالي اجزاي EDC براي سيستم هاي يونيت انژكتور در خودروهاي سواري
نگاه اجمالي اجزاي EDC براي سيستم هاي يونيت انژكتور (UIS) و سيستم هاي يونيت پمپ (UPS) در وسايل نقليه تجاري
نگاه اجمالي اجزاي EDC براي سيستم هاي ريل مشترك (CRS) در خودروهاي سواري
نگاه اجمالي اجزاي EDC براي سيستم هاي ريل مشترك (CRS) در وسايل نقليه تجاري
طرحي از يك ECU براي سيستم ريل مشترك با انژكتور درون پيزو
پردازش سيگنال در ECU
سيگنال هاي PWM
محاسبه مراحل تزريق سوخت در ECU
نمونه اي از خفه كن موج فعال (ARD)
نمونه اي از كنترل مداوم آرام (LRR)
وضعيت معمولي انتقال اطلاعات
وضعيت گذرگاه خطي اطلاعات
آدرس دهي و فيلتر كردن پيام (بررسي دريافت)
داوري رقم دودئي به وسيله رقم دودئي
حسگر دماي خنك كن
حسگر دما NTC : منحني مشخصه
المان محاسبه حسگر فشار با خلاء مرجع آن سمت اجزا
المان محاسبه حسگر فشار با درپوش و خلاء مرجع آن سمت اجزا
المان محاسبه حسگر فشار با درپوش و خلاء مرجع آن سمت اجزا
حسگر فشار ميكرومكانيكي با خلاء مرجع آن سمت اجزا
حسگر فشار تقويت ميكرومكانيكي (نمونه اي از منحني)
حسگر القايي دور
سيگنال از حسگر القايي دور
المان هال (پره انتقال اثر هال)
حسگر ميله اي اثر هال
منحني مشخصه حسگر پدال گاز با پتانسيومتر اضافه
انواع حسگر پدال گاز
اندازه گير جرم هوا لايه داغ HFM5 (مدار)
اندازه گير جرم هوا لايه داغ (ولتاژ خروجي از عملكرد گذشتن جريان جرم محدود هوا)
لايه داغ اندازه گير جرم هوا: قاعده سنجش
توربو شارژر با دريچه اتلاف
توربين هندسه متغير، توربو شارژر VTG
روش عملكرد توربو شارژر VST
پوشش المان شمع گرمكن نوع GSK2، (نوع داخل محفظه احتراق)
دماهاي سيستم هاي پيش گرمكن معمولي شمع هاي گرمكن در يك زمان عملكرد
نصب المان شمع گرمكن نوع داخل منيفولد ورودي

چكيده:
با پيشرفت تكنولوژي و علوم در ابعاد گوناگون به خصوص الكترونيك و نفوذ آن به علوم ديگر مانند مكانيك به عنوان كنترلر؛ كه با دقت، سرعت، صرف هزينه كم و بهره وري بالا، بهترين راندمان را ارائه ميدهد، موتورهاي ديزل نيز از اين قاعده مستثني نيستند.
با ورود الكترونيك به دنياي ديزل با بالا رفتن دقت و سرعت كنترل؛ مصرف سوخت كم، شتاب گيري بالا، صداي كم، آلودگي پائين و به طور كلي راندمان موتور، افزايش مي يابد.
از آن جا كه اين سيستم ها انحصاري ميباشد مي بايست براي آشنايي با آن ها به اطلاعات شركت سازنده متكي بود. البته براي جامع بودن اين اطلاعات ميتوان اطلاعات چند شركت را جمع آوري و مقايسه نمود.
براي عيب يابي و تعميرات اين گونه سيستم ها نياز به عيب ياب هاي الكترونيكي ميباشد. با اين وجود بايد با نحوه عملكرد و ساختار اين سيستم ها آشنايي كامل داشت.
در اين پروژه با برخي از انواع اين سيستم ها آشنا مي شويم.

بازدید : 247
11 زمان : 1399:2

تعداد صفحات:107
نوع فايل:word
فهرست مطالب:
پيش گفتار
فصل اول : سيال حفاري
مقدمه
هرزروي سيال حفاري
انواع سيالات حفاري
گازها
معايب سيالات گازي
محاسن سيالات گازي
مايعات
موارد استفاده از آب
ذرات كلوئيدي
گل حفاري
امولوسيون هيدروكربن هاي نفتي در آب
تركيبي از دو نوع سيال حفاري
سيال حفاري پايه روغني
سيال حفاري پايه آبي
سيال حفاري پايه سنتزي
فصل دوم : گل حفاري
انواع گل هاي حفاري
گل هاي روغني
گل هاي امولوسيوني پايه آبي
گل هاي امولوسيوني پايه نفتي
گل هاي رسي
وظايف گل حفاري
تميز كردن چاه
خنك كاري
روان كردن
پر كردن منافذ
كنترل فشار
معلق نگه داشتن
ترخيص شن
تحمل وزن لوله هاي حفاري
دريافت اطلاعات
انتقال توان هيدروليك پمپ ها به مته
بنتونيت
تهيه گل بنتونيتي
فوائد استفاده از گل حفاري در چاه هاي نفتي
افزودن ملاس
انواع رس
تعيين ماهيت رس
ذرات كلوئيدي
فصل سوم : تينر
انواع تينر
تينرهاي معدني
تينرهاي آلي
مهمترين تينرهاي ساخته شده
فصل چهارم : حفاري بوسيله هوا
حفاري تحت تعادل
روش هاي حفاري با هوا
روش تر
روش خشك
فصل پنجم : سيال حفاري هزينه ها را تا 10% در هر فوت كاهش مي دهد
مقدمه
زمينه ميدان
انتخاب مته و هيدروليك
مايع حفاري
نتيجه استفاده از سيال حفاري
بالا بردن rop
خلاصه كارهاي انجام شده
نتيجه
فصل ششم : تصفيه گل حفاري
مقدمه
سيستم هاي تصفيه گل حفاري
سيستم solid control
سيستم zero discharge
بازيافت گل هاي حفاري
كاهش حجم پسماند
به حداقل رساندن حجم باطله به كمك نرم افزار
به حداقل رساني حجم باطله توسط دستگاه هاي فرآوري
كاربرد خشك كن ورتيكال بست
تشريح سيستم
سيستم اداره سيال
نتيجه گيري
منابع

پيش گفتار:
امروزه علم سيال شناسي و نيز مهندسي گل وسعت و گستردگي زيادي پيدا كرده است به طوري كه در حال حاضر اين رشته به صورت تخصصي و فني در مقاطع دكتري تحت عنوان مهندسي گل تدريس ميشود.
در طي عمليات حفاري چه در صنايع نفت و چه در صنعت معدن كاري مهم ترين عوامل و فاكتورها در رسيدن به اهداف از پيش تعيين شده سيال حفاري ميباشد زيرا با توجه به خصوصيات فيزيكي و شيميايي كه هر يك از سيالات دارند به پيشرفت عمليات كمك شاياني ميكنند. بعنوان مثال از طريق گل ميتوان به نوع سازند زمين شناسي كه در حال حفر شدن است پي برد و يا از بروز اتفاقات بسيار مخرب و خطرناك همچون فوران چاه جلوگيري كرد.
اولين چاه نفتي مربوط ميشود به ژوئن سال 1859 كه در كنار يك چشمه نفتي در پنسيلوانيا حفر شد و در 27 اوت همان سال در عمق 21 متري به نفت رسيد. اين چاه توسط شخصي به نام ادوين دريك حفر شد و او اولين كسي بود كه نفت را از چاهي كه با وسايل مكانيكي ساده حفر شده بود استخراج كرد. به نوعي ميتوان گفت كه جرقه ايجاد صنعت گل از همان سال ها زده شد و تا به حال پيشرفت و ترقي قابل توجهي نموده است.
در چاه هاي نفتي بعلت عمق زياد و وجود فشارهاي ئيدروستاتيكي بالا و نيز فشارهاي زمين ايستايي (over burden pressure ) بايد از سيالاتي استفاده كرد كه چندين خواص شيميايي مختلفي داشته باشند تا بتوان از اين سيال براي چندين هدف مختلف استفاده كرد بعنوان مثال بايد وزن آن توانايي كنترل طبقات را داشته باشد و يا بتواند به خوبي مته حفاري را روغنكاري و خنك كند و نيز به مخزن نفتي ما آسيبي نرساند و راحت بتواند توسط پمپ هاي گل ، پمپ شود يا به عبارتي ديگر گرانروي آن به اندازه اي باشد كه فشار به پمپ هاي گل وارد نسازد.
گل هاي حفاري از طريق پمپ به رشته لوله هاي حفاري وارد ميشود و با سرعت بسيار زياد از سر نازل هاي مته به درون چاه ميريزد و از فضاي بين رشته لوله حفاري و ديواره چاه ( فضاي آنالوس ) به سطح زمين منتقل ميشود . وقتيكه گل به سطح زمين ميرسد گل قبل از بازگشت به مدار بررسي سرندهايي ريخته ميشود كه توسط آن ها ذراتي كه در اثر حفاري سازند وارد گل شده اند خارج ميشود. اين سرندها بر اساس اندازه ذرات ، مش بندي شده اند . به عنوان مثال براي جدا كردن ، ذرات رس بر روي سرندي به نام shale shaker ريخته ميشود و بعد در تانكي به نام mud tank ذخيره ميشوند . بر اساس تركيباتي كه دارد تصفيه ميشود و مجددا به مدار گردش گل باز ميگردد .
از روي تركيباتي كه گل زمان خارج شدن از چاه دارد ميتوان تا حدود زيادي به مطالبي پيرامون چاه پي برد از آن جمله ميتوان از ميزان گاز درون گل و يا ميزان آب گل حفاري و نيز نوع جامداتي كه در آن وجود دارند به اطلاعاتي هرچند مختصر ولي بسيار مهم پي برد.
با توجه به مطالبي كه ذكر شد به خاطر اهميت و حساسيتي كه اين مقوله دارد تلاش هاي بسياري براي پيشرفت اين صنعت ميشود.
در اين تحقيق سعي شده است انواع سيالات حفاري معرفي شود و همچنين نقش كليدي هر يك از آن ها در طي عمليات حفاري تعيين شود تا با استفاده از هر يك از آنها در زمان مشخص بتوان هزينه هاي حفاري را كاهش دهيم و راندمان عمليات را بالا ببريم .
همچنين در پايان اين تحقيق پروژه هاي عملي و اجرا شده اي كه با موفقيت به اتمام رسيده اند آورده شده است تا نمونه عملي خوبي براي اجراي هر چه بهتر عمليات حفاري به دست متخصصان باشد.

بازدید : 377
11 زمان : 1399:2

تعداد صفحات:16
نوع فايل:word
فهرست مطالب:
درايو دور متغير يا كنترل VSD براي موتورهاي القايي
اينورتر چيست؟
انواع اينورتر از نظر ورودي كدامند
انواع اينورتر از نظر كاربرد كدامند؟
مزاياي استفاده از اينورتر چيست؟
اينورتر چگونه مصرف برق را كاهش مي دهد؟
كدام اينورتر كيفيت دارد؟
معرفي درايو يا اينورتر
كاهش هزينه برق مصرفي
كاهش جريان راه اندازي
امكان ايجاد فشار ثابت در كاربرد پمپ ها
از ديدگاه علمي
فلسفه مبنا
عملكرد موتورخانه سرمايش با طرح شبكه اي
صرفه جويي در انرژي در سيستم شبكه اي

مزاياي استفاده از كنترل كننده هاي دور متغير

بازدید : 415
11 زمان : 1399:2

تعداد صفحات:54
نوع فايل:word
فهرست مطالب:
مقدمه
فصل اول:
تقسيم بندي كلي پمپ ها
انواع پمپ ها جابه جايي مثبت
پمپ هاي دوار
پمپ هاي رفت و برگشتي
مقايسه پمپ هاي جابه جايي مثبت و ديناميكي
فصل دوم:
توربوپمپ ها
اجزاي اصلي توربوپمپ ها
محاسبه هد توليدي پروانه
منحني مشخصه
پديده كاويتاسيون و مفهوم NPSH
بررسي خوردگي در توربو پمپ ها
قوانين تشابه پمپ هاو تركيب پمپ ها
جنس اجزاي توربو پمپ ها
اجزاي فرعي در توربو پمپ ها
پمپ هاي چند طبقه فشار قوي
ضمائم
منابع

مقدمه:
با توجه به نفوذ روز افزون سيستمهاي هيدروليكي در صنايع مختلف وجود پمپ هايي با توان و فشار هاي مختلف بيش از پيش مورد نياز است . پمپ به عنوان قلب سيستم هيدروليك انرژي مكانيكي را كه توسط موتورهاي الكتريكي، احتراق داخلي و … تامين ميگردد به انرژي هيدروليكي تبديل ميكند. در واقع پمپ در يك سيكل هيدروليكي يا نيوماتيكي انرژي سيال را افزايش ميدهد تا در مكان مورد نياز اين انرژي افزوده به كار مطلوب تبديل گردد.
فصل اول درمورد تقسيم بندي پمپ هاوآشنايي با انواع پمپ هاي جابه جايي مثبت و كاربردهاي آن ومقايسه پمپ هاي ديناميكي وجابه جايي مثبت مي باشد. فصل دوم به توضيح در مورد توربو پمپ ها،اجزاي اصلي آن ها، مثلث سرعت، منحني مشخصه، بررسي پديده كاويتاسيون، قوانين تشابه پمپ ها و سري و موازي بستن آن ها، بررسي خوردگي در توربو پمپ هاو در نهايت آشنايي مختصري در مورد پمپ هاي كاربردي در صنعت پرداخته شده است.

لينك دانلود

تعداد صفحات : 153

درباره ما
موضوعات
آمار سایت
  • کل مطالب : 1532
  • کل نظرات : 0
  • افراد آنلاین : 12
  • تعداد اعضا : 3
  • بازدید امروز : 170
  • بازدید کننده امروز : 1
  • باردید دیروز : 453
  • بازدید کننده دیروز : 0
  • گوگل امروز : 0
  • گوگل دیروز : 1
  • بازدید هفته : 928
  • بازدید ماه : 5170
  • بازدید سال : 18791
  • بازدید کلی : 1173651
  • <
    آرشیو
    اطلاعات کاربری
    نام کاربری :
    رمز عبور :
  • فراموشی رمز عبور؟
  • خبر نامه


    معرفی وبلاگ به یک دوست


    ایمیل شما :

    ایمیل دوست شما :



    کدهای اختصاصی