loading...

بهترين و سريعترين مرجع دانلود كارآموزي و پروژه و پايان نامه

دانلود پايان نامه و پروژه و كارآموزي در تمامي رشته هاي دانشگاهي

بازدید : 457
11 زمان : 1399:2

تعداد صفحات:75
نوع فايل:word
فهرست مطالب:
چكيده
كلمات كليدي
فصل اول : كليات
مقدمه
عوامل موثر بر كيفيت انتقال انرژي حاصله از آتشكاري
پارامترهاي موثر در كيفيت انتقال انرژي
امپدانس سنگ و ماده منفجره
ضريب امپدانس و ضريب جفت شدگي
تعريف متغير هاي تحقيق
چقرمگي شكست
مكانيك شكست
مقاومت و مكانيك سنگ ها
خواص مكانيكي سنگ ها
مغزه گيري و آماده سازي نمونه
ويژگي هاي مقاومت
شكست
مقاومت پسماند
تعيين مقاومت فشاري يك محوره
عوامل موثر بر مقاومت فشاري
آناليز فرآيند شكست سنگ
آتشكاري سنگ، داراي دو اثر ميباشد
فشار ديناميكي
فشار استاتيكي
مكانيزم آتشكاري متوسط نامحدود
زون شكست (زون فشرده شده)
يك روش محاسبه زون شكست
زون شكست (زون گسيختگي)
زون ارتعاش الاستيك
فصل دوم : ادبيات تحقيق
عمليات در معدن
مشخصات پارامترهاي شكست سنگ
شكست سنگ بعد از انفجار در معدن روباز
روش هاي آزمايشگاهي تعيين چقرمگي شكست سنگ در حالت كشش و برش
نمونه هاي (SR)
نمونه هاي (CB)
نمونه هاي (CCNBD)
نمونه هاي (SNSCB)
روش (PTS)
تحقيقات انجام شده
فصل سوم : روشهاي تحقيقات
روشهاي تحقيقاتي براي ارتعاشات ناشي از انفجار
شاخصهاي چگالي ارتعاش
رابطه تجربي ميرايي
تعيين چقرمگي شكست يك نوع سنگ با استفاده از يك قطعه آزمايشگاهي اصلاح شده
معرفي روش تست جديد
اندازه گيري چقرمگي شكست سنگ و بررسي خصوصيات شكست آن تحت شرايط بارگذاري مركب
تحليل اجزاء محدود نمونه CNSR جهت تعيين چقرمگي شكست مواد سنگي
فصل چهارم : يافته ها و نتايج
مكانيزم شكست سنگ
چقرمگي شكست
حالتهاي مختلف گسترش ترك
فشار چال، فشار انفجار و نواحي اطراف چال انفجار
معيارهاي تجربي پيشبيني شعاع هاي آسيب اطراف چال انفجار
براساس يك معيار سرانگشتي
برآورد مناطق پودر شده و ترك هاي شعاعي اطراف چال انفجاري
عوامل اصلي ميرايي امواج لرزهاي
آزمايشهاي ميداني
تعيين ماكزيمم مقدار خرج در هر تاخير
نمودارهاي عملي آتش باري
تداخل طول موج
تحليل عددي مكانيزم شكست پايه هاي سنگي در معادن عميق
تشريح تستهاي آزمايشگاهي
خصوصيات مصالح
مدل المان محدود
فصل پنجم : نتيجه گيري
نتيجه
تاثير زواياي بارگذاري
منابع

فهرست اشكال:
مقايسه دو رفتار شكننده و شكل پذير سنگ در اثر بار گذاري
تاثير اثر انتهايي نمونه بر روي شكست سنگ
آزمايش مقاومت فشاري يك محوره سنگ با توجه به نسبت ارتفاع به قطر
شكل شماتيكي دياگرام تاثيرات آسيبي آتشكاري
هندسه و نحوه بارگذاري نمونه sr Ouchterlony , 1988)
هندسه و نحوه بارگذاري نمونه CB ouchterlony , 1988)
هندسه، نحوه بارگذاري و مراحل ايجاد شكاف در نمونه (khan and Al –shayea ,2000) SNSCB
هندسه نمونه، نحوه بارگذاري و نماي شماتيك از نوك ترك قبل و بعد از تغيير شكل براي PTS –test (Backers et al ,2002(
صورت گرافيكي نقاط اندازه گيري و منحني رگرسيون
قطعه SCB (ترك زاويه دار – تكيه گاه ها متقارن)
قطعه ASCB (ترك مستقيم – تكيخ گاه ها نامتقارن)
سه مود اصلي انتشار ترك
مقطع چال انفجار و مناطق پنج گانه اطراف آن براساس پيشنهاد ايورسن و هماران
تغييرات تنش فشاري به كششي در اثر بازتاب از سطح آزاد در فاصله 20 متري از مركز انفجار
فركانس ارتعاش از وقايع ثبت شده
نمودار تخمين PPV براساس Q,R
نمودار برآورد ماكزيمم خرج ويژه برپايه PPV , R
هندسه مدل ساخته شده و استفاده شده در تحليل عددي
منحني تيپ بار جابجايي براي يك پايه
منحني رفتار پايه در شرايط توده سنگ با صلبيت پايين
منحني رفتار پايه در شرايط توده سنگ احاطه كننده با صلبيت بالا
نحوه انجام تست با استفاده از روش ASCB
هندسه نمونه آزمايش اصلاح شده Arcan
نمونه و دستگاه اصلاح شده Arcan
طرح يك مدل مش بندي شده كامل از دستگاه و نمونه اصلاح شده Arcan الف- قبل از بارگذاري ب- بعد از بارگذاري
المان هاي سينگولار اطراف راس ترك
مقايسه نتايج چقرمگي شكست حاصل از تست آزمايشگاهي و معيار MTS در مودهاي مختلف
تاثير زاويه بارگذاري بر مقادير نرخ انرژي كرنشي آزاد شده كل (GT)
تاثير زواياي بارگذاري بر نرخ انرژي آزاد شده كل، نرخ انرژي آزاد شده مد كششي و مد برشي و انرژي محاسبه شده توسط –J انتگرال در يك نمونه سنگ آهك
تاثير زواياي بارگذاري بر مقادير فاكتور شدت تنش براي يك نمونه سنگ آهك

فهرست جداول:
مغزه گيري و آماده سازي نمونه
پارامترهاي پايه مربوط به ارتعاشات ناشي از آتش باري و نتايج آزمايش هاي ميداني
روابط گوناگون برآورد منطقه پودر شده و ترك هاي شعاعي اطراف چال انفجار
اجازه ارتعاش ناشي از انفجار بر اساس استاندارد چين
نتايج موفقيت كاهش ارتعاشات و ميزان كاهش در ارتعاشات
اطلاعات استفاده شده در تحليل عددي
مشخصات مكانيكي سنگ هاي مورد استفاده در تحليل هاي المان محدود
مقايسه بين روشهاي مختلف ارائه شده براي اندازه گيري چقرمگي شكست سنگ

چكيده:
عبور امواج حاصل از انفجار باعث ايجاد تنشهاي كششي و فشاري در سنگ شده و توده سنگ را از لحاظ رفتار مكانيكي و ديناميكي تحريك مي نمايد. در بررسي كارايي مواد منفجره و بطور كلي ارزيابي كيفيت انفجار، داشتن اطلاع دقيق از رفتار سنگ تحت تنش هاي ناشي از انفجار و كيفيت انتقال و توزيع انرژي حاصله از آتشكاري نقش بسزايي دارند.
پديده رشد ترك در مواد سنگي مساله پيچيده‌اي است و اغلب نيازمند تكنيكهاي پيشرفته‌اي جهت پيشبيني هندسه شكست ميباشد. فرآيند شكست با جوانه‌زني ترك شروع ميشود كه وابسته به چقرمگي شكست است و بنابراين دقت هرگونه مدلسازي و نتايج آن به مقدار چقرمگي شكست سنگ بستگي دارد. از اين رو تعيين مقدار چقرمگي شكست اهميت ويژه‌اي دارد. اولين تلاشها توسط اشميت به منظور تعيين مقدار چقرمگي شكست سنگها بر مبناي روش تست استانداردي صورت پذيرفت كه براي اندازه‌گيري چقرمگي شكست كرنش صفحه‌اي مواد فلزي پيشنهاد شده بود. به دنبال آن كارهاي آزمايشگاهي فراواني جهت تعيين چقرمگي شكست سنگهاي مختلف با استفاده از نمونه‌هايي متفاوت صورت گرفت. صحت نتايج روشهاي تست تدوين‌شده نيازمند نمونه‌هايي با ابعاد هندسي بزرگ و هزينه‌هاي گران ماشين‌كاري بود كه در عمل تهيه آن ها از موادسنگي گاهي غيرممكن و يا غيرعملي بود تا اينكه نمونه‌هاي Core معرفي شدند كه نسبت به ساير نمونه‌ها مزاياي متعددي داشتند. مكانيك شكست سنگ بطور گسترده اي در فرآيند آتشباري سنگ ها، شكست هيدروليكي، تحليل شيب هاي سنگي، ژئوفيزيك، مكانيك زلزله، استخراج انرژي ژئوترمال زمين، حفاري هاي زيرزميني، حفاري چاه هاي نفت و در بسياري از مسائل كاربرد فراواني دارد. هنگاميكه يك سنگ ترك يا شكست ذاتي دارد، رفتار مكانيكي پيرامون انتهاي ترك، فاكتور مهمي است كه بايد در طراحي و پايداري فرآيندهاي ذكر شده مورد توجه قرار گيرد. اين مطالعه، كاربرد مكانيك شكست را براي مشخص كردن خصوصيات شكست بررسي مي كند. هدف اصلي اين تحقيق بررسي مكانيزم شكست سنگ در اثر انفجار – بخش عمده شكستگي سنگ و ايجاد درز و ترك چقرمگي و مقاومت سنگ و همچنين اهداف ديگر اين تحقيق تحليل عددي و ميداني انتشار امواج و ترك هاي حاصل از انفجار پيش شكافي در توده سنگ، تحليل عددي مكانيزم شكست پايه هاي سنگي در معادن عميق، تعيين چقرمگي شكست يك نوع سنگ با استفاده از يك قطعه آزمايشگاهي اصلاح شده، اندازه گيري چقرمگي شكست سنگ و بررسي خصوصيات شكست آن تحت شرايط بارگذاري مركب با استفاده از روش هاي عددي و آزمايشگاهي، تحليل اجزاء محدود نمونه CNSR جهت تعيين چقرمگي شكست مواد سنگي

مقدمه:
مكانيك شكست به بررسي رشد ترك و مكانيزم شكست ميپردازد كه مبناي آن اصلاحات و تعميمات ايروين بر روي تئوري شكست گريفيس بوده است. در واقع مكانيزم شكست شرحي كمي بر فرآيند شكست يك قطعه بكر توسط رشد ترك ميباشد. حوزه مكانيك شكست در برگيرنده روابط ميان ماكزيمم تنش مجاز، اندازه و محل ترك، سرعت رشد ترك ناشي از اثرات محيطي وامكان جلوگيري از حركت ترك ها ميباشد.
تركها و ناپيوستگي ها از ويژگيهاي متداول توده‌هاي سنگي ميباشند و هر فعاليت تحريك كننده در توده‌هاي سنگي (مانند زلزله، انفجارسنگ در معادن و تخريب شيب هاي سنگي) ممكن است سبب جا به جايي آن ها در امتداد شكستهاي موجود و يا پيدايش شكست‌هاي جديد گردد.
چقرمگي شكست سنگ پارامتر كليدي مكانيك شكست سنگ براي پيش بيني شروع و گسترش ترك ها در سنگ است كه نقش مهمي را در طراحي ابزار برش سنگ، انفجار سنگ، تحليل پايداري شيب هاي سنگي، طراحي شكافت هيدروليكي مخازن هيدروكربوري، تحليل پايداري چاه هاي نفت و گاز و بسياري ديگر از كاربردهاي مهندسي سنگ ايفا ميكند. چقرمگي شكست سنگ به ميزان مقاومت آن در مقابل شروع و رشد ترك اطلاق مي شود و يكي از خواص ذاتي سنگ است كه با روشهاي آزمايشگاهي تعيين ميشود. لذا با توجه به مطالب فوق اندازه گيري دقيق چقرمگي شكست سنگ اهميت ويژه اي مييابد.

بازدید : 479
11 زمان : 1399:2

تعداد صفحات:104
نوع فايل:word
فهرست مطالب:
چكيده
فصل اول
دسته بندي مبدلهاي حرارتي
مبدلهاي حرارتي از نظر انتقال و يا بازيابي گرما
مبدلهاي حرارتي از نظر فرآيند انتقال
مبدلهاي حرارتي از نظر شكل و ساختار
مبدلهاي لوله اي
مبدلهاي حرارتي دو لوله اي
مبدلهاي حرارتي پوسته و لوله اي
مبدلهاي حرارتي لوله اي حلزوني
مبدلهاي حرارتي صفحه اي
مبدلهاي حرارتي صفحه اي واشردار
مبدلهاي حرارتي صفحه اي حلزوني
مبدلهاي حرارتي لاملا
مبدلهاي حرارتي با سطوح پره دار
مبدلهاي حرارتي صفحه اي پره دار
مبدلهاي حرارتي لوله اي پره دار
مبدلهاي حرارتي از نقطه نظر مكانيزم هاي انتقال حرارت
مبدلهاي حرارتي از نظر آرايش هاي جريان هاي گرم و سرد
مبدلهاي حرارتي از نظر كاربرد آن ها
انتخاب مبدلهاي حرارتي
فصل دوم
روشهاي پايه در طراحي مبدلهاي حرارتي
معادلات پايه طراحي
ضريب كلي انتقال حرارت
روش متوسط لگاريتمي اختلاف دما براي تحليل مبدل حرارتي
مبدلهاي حرارتي با جريانهاي چند گذر و متقاطع
روش NTU-ε براي تحليل مبدلهاي حرارتي
آشنايي با روشهاي مختلف طراحي مبدلهاي حرارتي
فصل سوم
آشنايي با مبدلهاي حرارتي صفحه اي واشردار
خصوصات مكانيكي
مجموعه صفحه چارچوب
انواع صفحه
مشخصه هاي كاركرد
مزاياي اصلي
محدوديت هاي عملكرد
گذرها و آرامش هاي جريان
كاربردها
خوردگي
تعمير و نگهداري
محاسبات انتقال گرما و افت فشار
مساحت سطح انتقال گرما
قطر معادل كانل
ضريب انتقال گرما
افت فشار كانال
افت فشار دهانه هاي ورودي و خروجي
ضريب كلي انتقال گرما
سطح انتقال گرما
عملكرد حرارتي
فصل چهارم
مقايسه محاسبات انجام شده توسط فرمول ها و نرم افزار PWT
صورت مسئله اول (آب – آب)
اعداد بدست آمده بوسيله نرم افزار
اعداد بدست آمده بوسيله محاسبات
تحليل انتقال گرما
صورت مسئله دوم (آب – بخار)
چارت مراحل انجام محاسبات
مراجع

فهرست اشكال:
معيارهاي استفاده شده در دسته بندي مبدلهاي حرارتي
انواع مبدلهاي حرارتي تماس مستقيم
بازياب هاي دوار
مبدلهاي حرارتي دوار از نوع ذخيره اي
بازياب گرم كن هوا با صفحه دوار در نيروگاه بخار بزرگ با سوخت ذغال سنگ
بازياب پيش گرمكن هوا با صفحه ثابت
مبدلهاي حرارتي نوع تماس مستقيم
عملكرد كندانسور تبخيري
چگالنده تبخيري
مبدلهاي حرارتي دو لوله اي (دو شاخه اي يا سنجاقي) به همراه نماي مقطع و محفظه خم برگشت جريان
مبدلهاي حرارتي پوسته و لوله اي بصورت چگالنده در سمت پوسته
مبدلهاي حرارتي پوسته و لوله اي با دوگذر لوله و يك گذر پوسته با ديوارك
يك مبدل حرارتي پوسته و لوله اي با لوله هاي U شكل و يك گذر پوسته با ديوارك
يك مبدل حرارتي پوسته و لوله اي شبيه مبدل
نموداري كه مسيرهاي جريان در مبدل حرارتي صفحه اي واشردار را نشان ميدهد
اجزاي مبدل حرارتي صفحه اي واشردار
مبدلهاي حرارتي صفحه اي حلزوني
مبدلهاي حرارتي لاملا
دسته بندي مبدلهاي حرارتي بر طبق آرايش هاي جريان
آرايش هاي چند گذر و چند گذر متقاطع
تغير دماي سيال در مبدلها
مبدلهاي حرارتي صفحه اي واشردار
صفحه مبدل حرارتي نوع شورون
نمودار جريان در يك آرايش يك گذر مخالف جهت
مونتاژ مبدل حرارتي واشردار
آرايش صفحات
الگوي زاويه شورون
زاويه شورون بروي صفحات مجاور معكوس ميگردد
تميز كردن صفحات با مواد شيميايي
الگوي جريان
طرح ترسمي
طرح ترسمي آرايش سيستم دو گذر – يك گذر
سيستم خنك كاري مدار بسته
رژيم جريان بين صفحات
صفحه اول نرم افزار (وارد كردن دما و فشار طراحي)
صفحه دوم نرم افزار (وارد كردن دبي و دما و فشار كاري دو سمت)
صفحه دوم نرم افزار (انتخاب نوع، ضخامت،جنس ورق و همچنين نوع واشر و نحوه چسباندن آن)
صفحه دوم نرم افزار (انتخاب تعداد پاس ها و تعداد ورق هاي درون هر پاس )
صفحه سوم نتايج بدست آمده
صفحه سوم نتايج بدست آمده در رابطه با خواص فيزيكي سيالها و همچنين سرعتها و اعداد رينولدز دو سيال گرم و سرد

فهرست جداول:
جنس صفحات
برخي داده ها راجع به مبدلهاي حرارتي صفحه اي
انتخاب مواد براي صفحه هاي مبدل
ضرايب توصيه شده براي مبدلهاي صفحه اي
ثابت ها براي محاسبه افت فشار و انتقال گرماي يك فاز در مبدل حرارتي صفحه اي

چكيده:
مبدلهاي حرارتي، ابزاري هستند كه جريان انرژي گرمايي بين دو يا چند سيال در دماهاي مختلف را فراهم ميكنند. توليد برق، صنايع فرآيندي، شيميايي، غذايي، الكترونيك، مهندسي محيط زيست، بازيابي گرماي استفاده نشده، صنايع ساخت و توليد، تهويه مطبوع، تبريد و كاربردهاي فضايي از جمله كاربرد هاي مبدل هاي حرارتي هستند.

مقدمه:
رايج ترين مسائل در طراحي مبدلهاي حرارتي، تعيين مقدار نامي عملكرد و تعيين اندازه هاي نامي است. مساله تعيين مقادير نامي عملكرد به تعيين نرخ انتقال گرما و دماهاي خروجي سيالهاي سرد و گرم، براي نرخ ها و دماهاي ورودي مشخص جريان ها و افت فشار مجاز مشخص براي مبدلهاي حرارتي موجود مربوط است. از اين رو مساحت سطح انتقالي گرما و ابعاد گذرگاه جريان در دست هستند.
از سوي ديگر، مساله تعيين اندازه هاي نامي، به تعيين ابعاد مبدلهاي حرارتي مربوط ميگردد. كه به معناي نوع مناسب مبدلهاي حرارتي و تعيين اندازه هاي آن براي برآورد كردن دماهاي ورودي و خروجي سيالهاي گرم و سرد، نرخ دبي هاي جريان و افت فشار هاي مورد نياز است.

بازدید : 469
11 زمان : 1399:2

تعداد صفحات:46
نوع فايل:word
فهرست مطالب:
چكيده
مقدمه
حفرات تشكيل دهنده هيدرات
دوازده وجهي با سطوح پنج ضلعي
چهارده وجهي
شانزده وجهي
رفتار فازي تشكيل هيدرات
فرآيند تشكيل و تجزيه هيدرات
شرايط تشكيل هيدرات و ويژگي عمومي مولكول هاي مهمان
طبيعت شيميايي مولكول هاي مهمان
بررسي هندسي مولكول هاي مهمان
هيدرات بعنوان معضلي در صنعت نفت و گاز
فوائد هيدرات گازي
بهبود شرايط تشكيل هيدرات گازي
مواد بهبود دهنده هيدرات
مواد فعال سطحي
تشكيل مايسل توسط مواد فعال سطحي
هيدروتروپ ها
اثر مواد بهبود دهنده بر فرآيند تشكيل هيدرات
مكانيزم تاثير گذاري مواد بهبود دهنده
فصل سوم
نتيجه گيري و پيشنهادها
منابع و مآخذ
منابع لاتين

فهرست اشكال:
پيوند هيدروژني ميان چهار مولكول آب
ساختار كريستالي پايه براي يخ

چكيده:
با توجه به افزايش سهم گاز طبيعي در بازار مصرف جهاني، توجه به روشهاي انتقال بدون خط لوله افزايش يافته است. بيشتر روشهايي مورد توجه قرار گرفته است كه ظرفيت ذخيره سازي در آنها بالا و از نظر اقتصادي مقرون به صرفه باشند. يكي از ا ين روشها كه امروزه بسيار مورد توجه است، روش حمل گاز توسط هيدرات مي باشد. علاوه بر اين امروزه كاربردهاي صنعتي ديگري نيز براي اين پديده مطرح شده است و سبب شده است كه توجه به آن در صنعت بيشتر از پيش باشد. در پژوهش حاضر براي آشنايي بيشتر با اين پديده در فصل اول هيدرات گازي معرفي شده، ساختارهاي رايج آن و مطالعات عمده اي كه در اين زمينه صورت پذيرفته است، بصورت مشروح بيان شده است. با توجه به مشكلاتي كه در زمينه استفاده از آن در صنعت وجود دارد، محققيق افزودن مواد بهبود دهنده به سيستم تشكيل هيدرات را پيشنهاد نموده اند. از اين رو در فصل دوم به معرفي مواد بهبود دهنده و چگونگي تاثير گذاري آنها پرداخته شده است. در فصل سوم مدل پايه محاسبات هيدرات معرفي شده سپس اين مدل در حضور مواد بهبود دهنده مانند مواد فعال سطحي و هيدروتروپ ها اصلاح شده است، تا مدل پيشگوتري حاصل شود. در فصل چهارم نتايج حاصل از مدل سازي براي سيستم هاي مختلف تشكيل هيدرات براي مثال سيستم آب خالص، سيستم هاي شامل ماده بازدارنده متانول و سيستم هاي شامل انواع مواد بهبود دهنده رايج با نتايج تجربي مقايسه شده است و نشان داده شده است كه مدل با دقت بالايي قادر است فشار تشكيل هيدرات را در دماي مورد نظر پيش بيني نمايد. در فصل پنجم نتايج كلي حاصل از اين پژوهش ارائه شده است و در ادامه پيشنهاداتي جهت ادامه اين تحقيق براي علاقمندان به مطالعه اين پديده بيان گرديده است.

بازدید : 425
11 زمان : 1399:2

تعداد صفحات:32
نوع فايل:word
فهرست مطالب:
چكيده
انواع آب شكستگي
آب شكستگي عمومي
آب شكستگي در اثر تنگ شدگي
آب شكستگي موضعي
مكانيزم آب شستگي در اطراف پايه هاي پل
روابط پيش بيني حداكثر عمق آب شكستگي
تجهيزات آزمايشگاهي
مشخصات و محدوده آزمايش ها
نحوه اجراي آزمايش ها
آزمايش هاي اوليه
تغييرات حداكثر عمق آب شكستگي
تغييرات پروفيل هاي طول حفره آب شكستگي
تغييرات پروفيل هاي عرضي حفره آب شكستگي
استفاده از طوق براي كاهش آب شكستگي
انجام آزمايش فوق با وجود طوق
نحوه آب شكستگي در اطراف پايه پس از نصب طوق
آزمايش با طوق كوچك تر
آزمايش با طوق بزرگ تر
آزمايش با دو طوق كوچك تر
نتايج
مراجع

فهرست اشكال:
پل ساخته شده با پايه هاي كج در صفحه عمود بر جريان در كشور تايوان
الگوي جريان در اطراف يك پايه با مقطع مستطيل
تغييرات حداكثر عمق آب شكستگي با تنش برشي در بالا دست پايه
جزئيات و مشخصات علوم آزمايشگاهي
نمونه اي از بستر صاف شده و پايه كج با زاويه 21 درجه
نمونه اي از حفره آب شكستگي ايجاد شده
مقايسه پروفيل هاي طولي حفره آب شكستگي پايه 21 درجه كج شده به سمت بالا دست در شرايط جريان متفاوت
مقايسه پروفيل هاي عرضي حفره آب شكستگي پايه 21 درجه كج شده به سمت بالا دست در شرايط جريان متفاوت
نحوه قرارگيري طوق بر روي پايه (پلان)
نمودار بازدهي طوق در كاهش آب شكستگي روي پايه هاي استوانه اي
الگوي آب شكستگي در اطراف پايه بدون وجود طوق پس از 4 ساعت (اعداد عمق آب شكستگي به ميلي متر مي باشند) جريان از چپ به راست
الگوي آب شكستگي در اطراف پايه پس از 4 ساعت با طوقي به عرض پايه در تراز 10 درصد عمق بالاي بستر (اعداد عمق آب شكستگي به ميلي متر ميباشند) جريان از چپ به راست
الگوي آب شكستگي در اطراف پايه پس از 4 ساعت با طوقي به عرض نصف عرض پايه در تراز بستر (اعداد عمق آب شكستگي به ميلي متر ميباشند) جريان از چپ به راست
الگوي آب شكستگي در اطراف پايه پس از 4 ساعت به طوقي به عرض نصف عرض پايه در تراز 20 درصد عمق زير بستر (اعداد عمق آب شكستگي به ميلي متر ميباشند) جريان از چپ به راست
الگوي آب شكستگي در اطراف پيه پس از 4 ساعت با طوقي به عرض پايه در تراز بستر (اعداد عمق آب شكستگي به ميلي متر ميباشند) از چپ به راست.
الگوي آب شكستگي در اطراف پيه پس از 4 ساعت با طوقي به عرض پايه در 10 درصد عمق زير بستر (اعداد عمق آب شكستگي به ميلي متر ميباشند) از چپ به راست

چكيده:
اهميت پل در برقراري راههاي ارتباطي بر كسي پوشيده نيست. همه ساله هزاران پل در سراسر جهان در اثر آب شكستگي در اطراف پايه هاي آنها تخريب شده و يا خسارت ميبينند.
تخريب و خسارت وارده بر پلها علاوه بر ضررهاي مالي از آنجا كه اغلب در هنگام سيل رخ ميدهد به علت قطع راه هاي ارتباطي، كمك به مناطق سيل زده را مختل نموده و از اين نظر عواقب اجتماعي نيز به دنبال دارد.
كنترل در محافظت اطراف پايه هاي پل در مناطق آب شكستگي خواهد توانست از وارد آمدن اين خسارات پيش گيري نمايد و از اين رو تحقيق و مطالعه بر روي اين موضوع حائز اهميت زيادي ميباشد.

بازدید : 510
11 زمان : 1399:2

تعداد صفحات:51
نوع فايل:word
فهرست مطالب:
فصل اول
كليدهاي قدرت
عمل قطع و وصل كليدها
اشكالاتي كه ممكن است باعث عدم عملكرد كليدها شوند
اشكالات ناشي از عدم عملكرد صحيح كليد
تاثير عملكرد كليدهاي فشار قوي بر پايداري سيستم
عكس العمل مكانيكي بروز عيب در شبكه
خصوصيات عمده و مهم كليدهاي فشار قوي
تقسيم بندي كليدهاي فشار قوي بر حسب وظيفه‌اي كه دارند
روش هاي خاموش كردن جرقه
ازدياد طول جرقه
تشديد خنك كردن
مقطع كردن قوس
خلاء
خاموشي در نقطه صفر جريان
قطع جرقه در كليد
طبقه بندي كليدها از نظر عوامل موثر در خاموش كردن جرقه
خاموش كننده خودي
خاموش كننده خارجي
انواع كليدهاي قدرت (ديژنگتورها)
كليدهاي روغني
كليدهاي كم روغن
كليدهاي هوايي
كليدهاي خلاء
كليدهاي گازي
مشخصات الكتريكي كليدها
فصل دوم
سكسيونر يا كليد بدون بار (Disconector switch)
انواع سكسيونر
سكسيونر نوع تيغه اي
سكسيونر نوع كشويي
سكسيونر نوع دوراني يا افقي
سكسيونر پانتوگراف يا قيچي اي
انتخاب سكسيونر از نظر نوع و مشخصات
سكسيونر قابل قطع زيربار
شرايط استفاده از سكسيونر قابل قطع زيربار
سكسيونر زمين
روش هاي قطع و وصل يا مكانيزم عمل كننده
دستي
موتوري
فنر شارژ شده
روش پنوماتيك
روش هيدروليك
منابع و ماخذ

كليدهاي قدرت:
در يك پست فشار قوي كليد قدرت تقريباً يكي از اساسي ترين اجزاء آن ميباشد. كليدهاي قدرت نقش اصلي در قطع و وصل نمودن و دارد و خارج كردن نيروگاه ها و مصرف كننده‌ها و خطوط انتقال در شبكه را به عهده دارند. به طور كلي مانور در شبكه جهت تغيير در سيستم توزيع و انتقال انرژي توسط كليدهاي قدرت صورت ميپذيرد. در زمان ايجاد عيب يا خطايي بر روي شبكه كليدها قسمت عيب ديده را به سرعت از مدار خارج نموده و بدين وسيله از آسيب رسيدن به نيروگاه ها و وسايل تجهيزات پست كه ايجاد آن ها هزينه هاي هنگفتي را به وجود آورده جلوگيري
ميگردد.
به طور كلي عملكرد صحيح و به موقع كليدها بسيار اهميت دارد. كليدها دستور قطع و يا وصل را از طريق سيستم هاي كنترل و يا سيستم هاي حفاظت (رله هاي حفاظتي) دريافت مينمايند سيستم هاي كنترل بيشتر جهت انجام مانور در شبكه به كار برده ميشوند و حال اين كه سيستم هاي حفاظتي در موقع بروز عيب يا خطاء و به صورت اتوماتيك فرمان قطع را به كليدها ميدهند.
در موقع قطع و وصل جريان به وسيله كليد جرقه توليد ميشود. در موقع وصل، شروع جرقه زماني است كه فاصله كافي بين دو كنتاكت كليد، جهت تحمل ولتاژ نباشد و در موقعي كه كليد بسته شود و جرقه خاموش گردد كه البته بسته شدن كليدها ممكن است باعث ايجاد اضافه ولتاژهايي را بنمايد كه منجر به خسارت ديدن كليد و يا تجهيزات ديگر شود. به طور كلي به علت وجود شرايط مناسب تر در موقع وصل، قدرت وصل يك كليد در حدود 5/2 برابر قدرت قطع آن ميباشد مطالعه در مورد شرايط شبكه در موقع قطع كليدها از اهميت ويژه‌اي برخوردار بوده كه بايستي در طراحي كليدها مورد توجه قرار گيرد. وضعيت قطع جريان براي مدارهاي اندكتيو يا خازني و يا اهمي با يكديگر متفاوت ميباشد در زير شرح مختصري در مورد قطع مدارهاي مختلف ارائه ميگردد. معمولاً جدا شدن كنتاكتهاي كليد پس از دريافت فرمان قطع در لحظه ايي اتفاق مي افتد كه جريان صفر نميباشد و لذا به محض جدا شدن كنتاكترا جرقه در دو سر كنتاكتها به وجود مي آيد، در موقعي كه جريان به مقدار صفر ميرسد جرقه ميتواند خاموش شود ليكن اگر فاصله بين دو كنتاكت به مقدار كافي جهت تحمل ولتاژ دو سر آن نرسيده باشد مجدداً جرقه توليد خواهد شد و جرقه تا رسيدن جريان به مقدار صفر در نيم سيكل بعدي ادامه خواهد داشت همان گونه كه مطلع ميباشيد در يك مدار سلفي خالص جريان نسبت به ولتاژ به مقدار 90درجه تاخير فاز دارد و موقعي كه جريان به مقدار صفر ميرسد ولتاژ به حداكثر مقدار خود خواهد رسيد كه اين موضوع باعث ميشود كه احتمال برقراري مجدد جرقه در مدارهاي سلفي را زياد نمايد. به هر حال در اين حالت بين دو كنتاكت بايستي فاصله به حد كافي جهت تحمل حداكثر ولتاژ دو سر كنتاكت وجود داشته باشد كه اين موضوع باعث طولاني شدن زمان جرقه ميشود.

بازدید : 477
11 زمان : 1399:2

تعداد صفحات:28
نوع فايل:word
فهرست مطالب:
فصل اول
تعاريف
مكانيزم هاي كنترل ازدحام در شبكه TCP
Slow Start
Congestion Avoidance
Fast Retransmission
Fast Recovery
پيشرفت هاي جديد در زمينه كنترل ازدحام در TCP
TCP Tahoe
TCP Reno
TCP New Reno
TCP Vegas
فصل دوم
عملكرد بهينه TCP در شبكه هاي بي سيم حسي
شبكه هاي حسي مبتني بر IP
محدوديت گره ها
آدرس دهي مركزي
مسير يابي متمركز
سر بار هدر
Distributed TCP Caching
مكانيزم هاي پروتكل
شناسايي اتلاف بسته ها و ارسال مجدد به صورت محلي
Selective Acknowledgement
توليد مجدد تصديق به صورت محلي
TCP Support for Sensor Nodes
مكانيزم هاي پروتكل
انتقال مجدد سگمنت هاي TCP به صورت محلي
توليد مجدد و بازيابي تصديق (TCP Acnowledge
مكانيزم Back pressure
منابع

تعاريف (definitions):
سگمنت (Segment): به بسته هاي TCP (Data,Ack) اصطلاحا سگمنت گفته ميشود.
(Sender Maximum Segment Size)SMSS: اندازه بزرگ ترين سگمنتي كه فرستنده ميتواند ارسال كند. اين مقدار بر اساس حداكثر واحد انتقال در شبكه، الگوريتم هاي تعيين MTU ،RMSS يا فاكتورهاي ديگر تعيين ميشود. اين اندازه شامل هدر بسته و option نمي باشد.
(Receiver Maximum Segment Size)RMSS: سايز بزرگ ترين سگمنتي كه گيرنده ميتواند دريافت كند. كه در يك ارتباط در فيلد MSS در option توسط گيرنده تعيين ميشود و شامل هدر و option نمي باشد.
(Receiver Window)rwnd: طول پنجره سمت گيرنده.
(Congestion Window )cwnd: نشان دهنده وضعيت متغير TCP است كه ميزان داده در شبكه را محدود ميكند. در هر لحظه، حجم داده در شبكه به اندازه مينيمم cwnd و rwnd مي باشد.

مكانيزم هاي كنترل ازدحام در شبكه TCP:
در يك شبكه زماني كه ترافيك بار از ظرفيت شبكه بيشتر ميشود، ازدحام اتفاق مي افتد. كه بمنظور كنترل ازدحام در شبكه الگوريتم هاي متفاوتي وجود دارد. در يك ارتباط، لايه شبكه تا حدي قادر به كنترل ازدحام در شبكه است اما راه حل واقعي براي اجتناب از ازدحام پايين آوردن نرخ تزريق داده در شبكه است. TCP با تغيير سايز پنجره ارسال تلاش مي كند كه نرخ تزريق داده را كنترل كند.
شناسايي ازدحام اولين گام در جهت كنترل آن است.
در گذشته، شناسايي ازدحام به راحتي امكان پذير نبود. از نشانه هاي آن وقوع Timeout به دليل اتلاف بسته يا وجود noise در خط ارتباطي يا اتلاف بسته ها در روترهاي پر ازدحام و … را ميتوان نام برد. اما امروزه از آنجا كه اكثرا تكنولوژي بستر ارتباطي از نوع فيبر ميباشد اتلاف بسته ها كه منجر به خطاي ارتباطي شود بندرت اتفاق مي افتد. و از طرفي وقوع Timeout در اينترنت بدليل ازدحام ميباشد.
در همه الگوريتم هاي TCP فرض بر اين است كه وقوع Timeout به دليل ازدحام شبكه است.

بازدید : 438
11 زمان : 1399:2

تعداد صفحات:78
نوع فايل:word
فهرست مطالب:
مقدمه
فصل يكم : Grid Computing چيست ؟
فصل دوم : مزيت هاي Grid Computing
استفاده موثر از منابع
قابليت محاسبه موازي
منابع مجازي و سازمان هاي مجازي
دسترسي به منابع اضافه
متعادل سازي استفاده از منابع
قابليت اطمينان
مديريت
فصل سوم : مفاهيم و معماري
سازمان هاي مجازي و Grid
چالش هاي تكنيكي در به اشتراك گذاشتن
سير تكامل تكنولوژي Grid
معماري Gri
Fabric : رابط هايي براي كنترل هاي محلي
Connectivity : برقراري ارتباط ساده و امن
Resource : به اشتراك گذاشتن يك منبع
Collective : هماهنگي چندين منبع
Application
پياده سازي معماري Grid
Globus Toolkit v2.0
Fabric
Connectivity
Resource
Collective
Open Grid Services Architecture
فصل چهارم : مدلي براي برنامه نويسي
تعريف محيط و هدف
المان ها
كار
قسمت كردن
ريزكار
منبع محاسباتي
زمانبند
ذخيره كننده
مدل برنامه نويسي، به صورت شبه كد
طرف منابع محاسباتي
طرف زمانبند
تقسيم كننده
فلوچارت و كمي از جزئيات برنامه نويسي
فلوچارت طرف زمانبند
فلوچارت طرف منبع محاسباتي
روشي براي تقسيم كردن در مسائل Back-track
ساختمان داده گره
درخت خاكستري
قطع كردن درخت
زمانبندي
نكات تكميلي

فهرست شكل ها:
مراحل مجازي سازي
Grid منبع نامتجانس و از نظر جغرافيايي از هم جدا را مجازي سازي مي كند
كارها به جاهايي كه بار كمتري دارند برده مي شوند
پيكر بندي Grid در مواقع بحراني
مديران مي توانند سياست هاي خاصي را تنظيم كنند
يك سازمان مجازي
سير تكامل تكنولوژي Grid
لايه هاي معماري Grid
مثالي از مكانيزم Globus Toolkit
المان هاي سيستم
قسمت هاي مختلف سيستم
قسمتي از فلوچارت طرف زمانبند
فلوچارت طرف زمانبند
طرف منبع محاسباتي
درخت متقارن و منابع متقارن
درخت متقارن و منابع نامتقارن
درخت نامتقارن و منابع متقارن
درخت نامتقارن و منابع نامتقارن
مراحل زمانبندي
مراحل زمانبندي
مراجع و منابع

چكيده:
هدف Grid Computing به اشتراك گذاري منابع در يك محيط پويا و احتمالاً ناهمگن است. اين منابع با سياست هاي مختلف در دسترس هستند. اين به اشتراك گذاري عمدتاً براي اهداف محاسباتي براي مقاصد علمي است اما در موارد اقتصادي نيز كاربرد دارد. اين منابع مي توانند منابع گوناگوني از جمله CPU، هارد ديسك، نرم افزار و سنسورها باشند.
در اين گفتار مفاهيم، مزيت ها و كاربردهاي Grid را بررسي مي كنيم، يك معماري براي Grid معرفي مي كنيم و مدل OGSA را بررسي مي كنيم. يك مدل كلي براي برنامه نويسي تحت Grid بيان مي كنيم و جزئيات اين مدل را براي مسائل Back-track بررسي مي كنيم و درخت خاكستري را معرفي مي كنيم. در نهايت مسئله N – وزير را در محيط Grid حل مي كنيم و براي نشان دادن قدرت محاسبه موازي، نتايج عمل ضرب ماتريس با استفاده از ده ماشين را بيان مي كنيم.

بازدید : 501
11 زمان : 1399:2

تعداد صفحات:59
نوع فايل:word
فهرست مطالب:
مقدمه
تاريخچه سازمان آموزشي فني و حرفه اي
مشخصات كلي و موقعيت مركز آموزش فني و حرفه اي
بهداشت و رفاه
سالن نساجي
ماشين آلات
آشنايي با مراحل توليد
تهيه مواد اوليه
طبقه بندي الياف نساجي
خواص فيزيكي
خواص شيميايي
ريسندگي
ريسندگي الياف بلند
ريسندگي الياف كوتاه يا پنبه اي
مقدمات بافندگي
مقدمات نخ تار
بوبين پيچي
مقدار كشش روي نخ
محاسبات
چندلاكشي و چند لا تابي
چله پيچي
قفسه يك رديفه
قسمت جلو ماشين
قسمت توقف الكتريكي
شانه
كيفيت كار چله پيچي
تعمير و نگهداري ماشين چله پيچي
نخ كشي
نخ كشي يا چله كشي
روشهاي متعادل نخ كشش
نخ كشي مستقيم( ساده يا رديف)
نخ كشي جهشي
نخ كشي چند دستگاهي
نخ كش جناغي
نخ كشي تركيبي
محاسبات مربوط به شانه
بافندگي
غلطك نخ تار
پل نخ تار
انواع پل تار
ميله هاي تقسيم نخ هاي تار
وظايف ميله هاي مقسم
لامل ها
وردها و ميل ميلك ها
دفتين
پايه
شانه
جسم پودگذار
پل پارچه
غلطك كشش پارچه(غلطك سمباده اي يا خاردار)
غلطك پارچه
كناره گير يا تمپل
عمليات يك سيكل بافندگي
مكانيزم تشكيل دهنده و پودگذاري
مكانيزم پودگذاري
مكانيزم تشكيل دهنه دابي
طريقه انتقال حركت از دابي به وردها
ميل لنگ
مكانيزم پودگذاري پروژكتايل
مزاياي ماشين بافندگي بي ماكو
دفتين زدن در ماشين بافندگي پروژكتايل
مكانيزم كنترل و مراقبت
مكانيزم كنترل نخ تار
مكانيزم كنترل نخ پود
سرعت و توان پودگذاري ماشين بافندگي پروژكتايل
منابع و مآخذ

فهرست اشكال:
درجه مهارت كارآموزان
موقعيت مكاني سازمان فني و حرفه اي
محل قرارگيري ماشين آلات در سالن نساجي
بوبين پيچي
درام
نخ كشي مستقيم
نخ كشي جهشي
نخ كش جناغي
نخ كشي تركيبي
نمره گذاري شانه
نمره گذاري شانه
نماي كلي ماشين بافندگي
لامل
ورد و ميلميلك
ماشين سولز-روتي p7200
پروژكتايل
انواع و ابعاد پروژكتايل
تور شن بار
اهرم ضربه و مضراب
مكانيزم پرتاب پروژكتايل
كناره برگردان
راهنما
مكانيزم كنترل نخ تار

مقدمه:
ماشين بافندگي پروژكتايل در آغاز دهه 50 وارد بازار شد و هنوز هم در سراسر جهان به كار ميرود. به دليل نوآوري هاي پيوسته و استفاده از سيستم هاي الكترونيكي پيشرفته و نيز استفاده از ريزپردازنده براي نظارت و كنترل وسايل مختلف اين ماشين سطح بازده خوب و قابليت كاركرد بالايي به دست آورده است. اين ماشين به خصوص در حوزه ماشين هاي با عرض شانه زياد جاي خود را تثبيت كرده است.
در اين ماشين بافندگي، پودگذاري به وسيله پرتابه هاي گيره دار كوچكي به نام پروژكتايل انجام ميگيرد كه تعداد آن ها بستگي به عرض بافت دارد. اين پرتابه ها به وسيله نخ گيره هاي خود نخ پود را از بوبين هاي بزرگ با پيچش گرفته و آن را از دهانه تار در يك جهت مي گذراند. پروژكتايل به نوبت عمل ميكند و به صورت پي در پي پرتاب ميشود. بنابراين يكي پس از ديگري حركت كرده و در فضا يك مسير پيوسته و حلقوي را تعريف مي كند. كه گويي بر روي يك زنجيره نقاله قرار گرفته اند. پروژكتايل اول پود را به صورت يك دنباله در عقب خود گرفته و نگه مي دارد. سپس به وسيله ميله اي ترشن بار پرتاپ مي شود. پروژكتايل از دهانه تار عبور كرده و نخ پود را از داخل نخ هاي تار مي كشاند و پس از آن پايين مي افتد و به وسيله قسمتي كه از زير رديف نخ هاي تار عبور مي كند با سرعتي كمتر به نقطه آغاز خود برمي گردد. در اينجا پروژكتايل براي گرفتن پود جديد به سمت مكان پرتاپ مي رود. همزمان پروژكتايل هاي ديگر پي در پي حركت كرده و همين عمل را انجام ميدهد.

بازدید : 276
11 زمان : 1399:2

تعداد صفحات:55
نوع فايل:word
فهرست مطالب:
فصل اول
اصلاح غشاها توسط روش هاي سل – ژل و casting
غشاهاي تبادل پروتون
اصلاح غشاهاي نفيان به روش سل – ژل
واكنش هيدروليز
واكنش چگالش
روش هاي نفوذ تدريجي
غشا هيبريدي (SiO2) به روش نفوذ تدريجي
تهيه غشاهاي هيبريدي به روش سل – ژل ديگر ذرات فلزي
روش اختلاط محلول غشا و پيش ماده و Casting آنها
تهيه غشا هاي هيبريدي به روش Casting با استفاده از اختلاط ذرات اكسيد فلزي
فصل دوم
مروري بر غشاها غشايي و فرآيندهاي غشايي
فرآيندهاي غشايي
مزاياي فرآيندهاي غشايي
تاريخچه استفاده از غشا
تعريف غشاها
جنس غشا
انتخاب جنس غشا
ساختار و دسته بندي غشاها
غشاهاي يكپارچه
غشاهاي مركب
محدوديت ها
مقاومت در برابر حرارت و pH
مقاومت در برابر محيط هاي اكسيدي
فصل سوم
پيل ها
مقدمه
تعريف
تاريخچه
نقش و تأثير در زندگي
ساختار يا ساختمان
طرز كار و مكانيزم كار
كاربردها
چشم انداز و آينده بحث
ايرانيان پديد آورنده ي پيل الكتريكي در دو هزار سال پيش
پيل سوختي
مزاياي پيل سوختي
انواع پيل سوختي
انواع پيل هاي سوختي
پيل هاي سوختي با غشا تبادل پروتون
پيل هاي سوختي بازي
پيل هاي سوختي كربنات ذوب شده
پيل هاي سوختي اكسيد جامد
پيل هاي سوختي متانول مستقيم
پيل هاي سوختي اصلاح شده
انواع سوخت مورد استفاده در پيل سوختي
سوخت هاي فسيلي
نفت خام
ذغال سنگ و گاز ذغال سنگ
گاز طبيعي
سوخت هاي منشا زيستي
توليد هيدروژن از انرژي خورشيدي، آب و باد
برخي از ويژگي هاي انرژي هاي تجديد پذير (نوين)
پيل هاي سوختي غشا مبادله گر هيدروژن
مواد تشكيل دهنده الكتروليت در پيل سوختي غشا تبادل پروتون
فرايندهاي انجام شده بين اجزا در داخل پيل سوختي
عملكرد پيل سوختي غشاي تبادل پروتون
اتصال هاي داخلي در پيل سوختي اكسيد جامد
مواد تشكيل دهنده الكترود در پيل سوختي اكسيد جامد
كاركرد هاي الكترود هاي پر منفذ در پيل هاي سوختي
مواد تشكيل دهنده الكتروليت در پيل سوختي اكسيد جامد
كاربردهاي پيل سوختي نيروگاهي

بازدید : 662
11 زمان : 1399:2

تعداد صفحات:99
نوع فايل:word
رشته مكانيك
فهرست مطالب:
فهرست مطالب
پيشگفتار
فصل اول:مقدمه
مقدمه
فصل دوم:انواع چرخدنده
چرخدنده شانه ا ي
چرخدنده ساده
چرخدنده ساده داخلي
چرخدنده مارپيچي
چرخدنده مخروطي
چرخدنده حلزوني
چرخدنده جناقي
فصل سوم:مكانيزم چرخدنده مخروطي
ابعاد چرخدند ه مخروطي و مكانيزم آن ها
قابليت انتقال بار
محاسبات مقاومتي
فصل چهارم:چرخدنده مخروطي مارپيچ
طبقه بندي عموي چرخدنده مخروطي مارپيچ
هندسه چرخدنده مخروطي مارپيچ و روابط پايه ا ي
زاويه مارپيچ
جهت مارپيچ
جهت هاي چرخش
انتخاب جهت انحنا و چرخش
اشكال مخروط هاي چرخدنده مخروطي
جهت مارپيچ، جهت چرخش و رابطه آن ها با نيروها
تجزيه نيروها
نيروي رانش محوري
نيروي شعاعي
محاسبات تنش و نرخ توان
سيستم گليسون Gleason
زاويه مارپيچ سيستم گليسون
چرخدنده صفر و هايپوئيد
چرخدنده هاپيوئيد(hypoid gears
چرخدنده مخروطي مارپيچ با سيستم پالوئيد(palloid) كلينبرگ
سيستم كروكس(kurvex) براي چرخدنده مخروطي مارپيچ
محاسبات چرخدنده كروكس
طراحي چرخ دنده هاپيوئيد براي محورهاي اتومبيل
چرخدنده مخروطي مارپيچ سيستم آركوئيد(ARCOID)
فصل پنجم:حل مسأله و برنامه مطلب
حل مسأله
برنامه مطلب
نتيجه گيري
پيشنهادات
منابع

مقدمه :
پينيون و كرانويل:
عمل اين قسمت در واقع فراهم ساختن يك نسبت دائمي كاهش سرعت است و همچنين چرخش 90 درجه اي مسير گشتاور انتقالي. نسبت كاهش سرعت در اين قسمت در حدود 4:1 براي خودروهاي معمولي تا 10:1 براي خودروهاي سنگين متغير است. اين عمل در يك يا دو مرحله انجام ميشود. براي كاهش كمتر از حدود 7:1 اين عمل يك مرحله اي و براي كاهش بيشتر اين كار در دو مرحله صورت ميگيرد. كاهش دور توسط يكدست چرخدنده صورت ميگيرد كه گشتاور دريافتي از محور خروجي جعبه دنده را به ديفرانسيل انتقال ميدهند. اين چرخدنده ها از دو چرخدنده كه يكي كوچكتر به نام پينيون( pinion ) و ديگري بزرگتر بنام كرانويل( crown wheel ) تشكيل ميشود. البته گاهي اوقات و در برخي موارد از جمله در خودروهاي سنگين بجاي پينيون و كرانويل از حلزون( worm ) و چرخ حلزون( worm wheel ) استفاده ميشود كه به علت اصطكاك بيشتر راندمان مكانيكي كمتري نسبت به چرخ دنده ها دارند، اما نيروي فشارنده آن ها بيشتر است و استفاده از آن ها در جاهايي كه كاهش سرعت بيشتري مورد نياز ميباشد، مناسبتر است.

لينك دانلود

تعداد صفحات : 153

درباره ما
موضوعات
آمار سایت
  • کل مطالب : 1532
  • کل نظرات : 0
  • افراد آنلاین : 3
  • تعداد اعضا : 3
  • بازدید امروز : 350
  • بازدید کننده امروز : 1
  • باردید دیروز : 302
  • بازدید کننده دیروز : 0
  • گوگل امروز : 0
  • گوگل دیروز : 1
  • بازدید هفته : 654
  • بازدید ماه : 4896
  • بازدید سال : 18517
  • بازدید کلی : 1173377
  • <
    آرشیو
    اطلاعات کاربری
    نام کاربری :
    رمز عبور :
  • فراموشی رمز عبور؟
  • خبر نامه


    معرفی وبلاگ به یک دوست


    ایمیل شما :

    ایمیل دوست شما :



    کدهای اختصاصی