loading...

بهترين و سريعترين مرجع دانلود كارآموزي و پروژه و پايان نامه

دانلود پايان نامه و پروژه و كارآموزي در تمامي رشته هاي دانشگاهي

بازدید : 491
11 زمان : 1399:2

تعداد صفحات:88
نوع فايل:word
فهرست مطالب:
چكيده
مقدمه
فصل اول : معرفي سيكل تبريد مغناطيسي
تاريخچه سيكل تبريد مغناطيسي
مباني تبريد
ضريب عملكرد
مباني مغناطيس
ميدان مغناطيسي
چگالي شار
نفوذ پذيري مغناطيسي (پرمابيليته)
قانون بيوساوار
نفوذ پذيري مغناطيسي و شدت ميدان مغناطيسي
شدت ميدان مغناطيسي
نيروي محركه مغناطيسي
تلفات انرژي در ماده فرو مغناطيس
هيسترزيس يا پس ماند مغناطيسي
ساختار مغناطيس
دو قطبي مغناطيسي
دامنه مغناطيسي
اثر مغناطيس – گرمايي
مدلسازي سيكل ترموديناميكي
مغناطيس سازي آدياباتيك
انتقال آنتالپي در فرآيند مغناطيس ثابت
مغناطيس زدايي آدياباتيك
انتقال آنتروپي در فرآيند مغناطيس ثابت
فصل دوم : فاكتورهاي مهم در طراحي سيكل تبريد مغناطيسي
معرفي مواد مغناطيس – گرمايي
منگانيت ها
نتيجه گيري
گادولينيوم
تحليل ترموديناميكي سيكل تبريد مغناطيسي
آنتالپي ويژه
قابليت مغناطيس پذيري
ظرفيت گرمايي هاي ويژه
آنتروپي ويژه و ظرفيت گرمايي ويژه
برخي معادلات مفيد براي مطالعه سيكل ها
مغناطيس سازي و مغناطيس زدايي در دماي ثابت
مغناطيس سازي و مغناطيس زدايي آدياباتيك
سيكل هاي تبريد
سيكل برايتون
سيكل اريكسون
سيكل كارنو
فصل سوم : انواع و كاربردها و مزايا و معايب تبريد مغناطيسي
مزايا و معايب
كاربردها
نتيجه گيري
منابع و مآخذ

فهرست اشكال:
اميل واربورگ
قسمت عنوان مقاله واربورگ در مورد اثر مغناطيس – گرمايي
سيكل يخچال
نماي شماتيك يخچال
چگالي شار بر حسب شدت ميدان مغناطيسي در مواد غير فرو مغناطيس
چگالي شار بر حسب شدت ميدان مغناطيسي در مواد فرو مغناطيس
حلقه هيسترسيس ماده فرو مغناطيس
دامنه ها در جسم فرو مغناطيس بدون ميدان مغناطيسي خارجي
ماده پروسكايت
كريستال منگانيت
نمودار دماي شعله نسبت به نسبت مولي گليسين به نيترات
دستگاه آهنرباي الكترو مغناطيس تست نمونه
دستگاه آزمايش نمونه هاي مواد منگانيت آلوده به مس
دياگرام فازي منگانيت
فرايند توليد نمونه
كالري متري سه نمونه با 0 و 5 و 10 % آلودگي به مس
داده هاي خام مغناطيسي
دماهاي گذار كوري براي غلظت هاي متفاوت مس
يون هاي مس حل نشده در منگانيت با بزرگ نمايي 10000 برابر
سيگنال هاي خام از كالري متري
آنتروپي مغناطيسي محاسبه شده از ظرفيت هاي گرمايي اندازه گيري شده
تغييرات آنتروپي
منحني هاي مغناطيس سازي نرمال شده براي گادولينيم خالص
تغيير دماي آدياباتيك گادولينيوم در نزديكي دماي كوري
آهنرباي دائم
آهنرباي الكتريكي ميدان داخل نمونه برآيند ميدان خارجي و مقاومت جسم است
سيكل تبريد مغناطيسي برايتون
سيكل تبريد مغناطيسي اريكسون
يخچال مغناطيسي طبقه اي
ارزيابي يخچال مغناطيسي

چكيده:
هم اكنون تلاش زيادي براي توسعه مواد مغناطيس – گرمايي، كه مبردهاي يخچال هاي مغناطيسي هستند در بخش پژوهش در حال انجام است. اين امر منجر به توسعه مداوم مواد جديد با عملكرد بهتر و تغييرات آنتروپي بالاتر، تغييرات دماي آدياباتيك بالاتر و هيسترزيس پايين تر شده است. تمامي اين فعاليت ها منجر به بالا رفتن پتانسيل اين فناوري در بازار تبريد شده است. بازارهاي ديگري نيز در زمينه تهويه مطبوع، فرآوري غذا، اتومبيل سازي، پزشكي و حتي گرمايش وجود دارند. با وجود اين كه اين فناوري تا به حال براي دماهاي بسيار پايين به كار مي رفته است ولي همان طور كه گفته شد در آينده نزديك كاربرد آن در دماهاي نزديك به محيط نيز بسيار مورد توجه قرار خواهد گرفت به همين ترتيب در اين مقاله محوريت با دماهاي نزديك به محيط است.

مقدمه:
بازار فناوري تبريد بسيار وابسته به صنايع غذايي، صنايع شيميايي و دارويي و همچنين صنايع خودرو سازي و غيره ميباشد. بعضي از اين صنايع داراي بازارهاي به شدت درحال رشد، به لطف افزايش درآمد كشورهاي شرق اروپا، هند و چين هستند. بعلت آن كه تعداد تاسيساتي كه بر مبناي فناوري هاي تبريد جايگزين سيكل تراكمي ساخته شده مانند سيستم هاي جذبي، ادزورپشن،الكتريك – گرمايي، صوت – گرمايي و غيره ناچيز هستند هنوز سيكل تراكمي بعنوان اصلي ترين فناوري تبريد به كار ميرود.
بنابراين تمايل به استفاده از سيستم هاي تراكمي براي تبريد خانگي نيز افزايش مييابد. بر اساس گزارش كميسيون اروپا ميزان گازهاي HFC توليد شده در جهان از سال 1995 تا سال 2010 ميلادي 62 درصد افزايش داشته است. كه تهويه مطبوع و تبريد عامل 43 درصد آن بوده اند.
تقريباً زمان آن رسيده است كه به جايگزين هاي سيكل تراكمي، بعنوان مثال تبريد مغناطيسي توجه شود.
تبريد مغناطيسي بر مبناي خواص مغناطيس – گرمايي بعضي از مواد فرو مغناطيس عمل ميكند. با اين كه اين فناوري در دهه سي ميلادي براي اولين بار استفاده شد ولي از آن زمان تا دهه اخير صرفاً كاربرد آزمايشگاهي يا به ندرت صنعتي براي كاربردهاي خاص و دماهاي مافوق سرد داشته است. تا اين كه اخيراً با توجه به كشف مواد با خاصيت مغناطيس گرمايي بالاتر از عناصر ساده متخصصان به اين نتيجه رسيده اند كه ميتوان از اين فناوري بطور گسترده و در دماهاي نزديك به دماي محيط استفاده نمود و با توسعه اين فناوري در بسياري از كاربردهاي رايج امروزي حتي تهويه خانگي ميتواند جايگزين سيكل هاي تبريد و تراكمي گردد.
اساس كار تبريد مغناطيسي بطور خلاصه به اين ترتيب است كه اگر جسمي از جنس ماده با خواص مغناطيس – گرمايي در معرض ميدان مغناطيسي حاصل از سيم پيچ الكتريكي يا آهنرباي دايمي قرار گيرد، درجه حرارت آن بالا ميرود، حال اگر در همان شرايط اقدام به خنك كردن جسم تا دماي محيط يا حتي سرد تر از آن كنيم پس از آن كه جسم از معرض ميدان مغناطيسي خارج شود دماي آن به نسبت كاهش مييابد. به همين ترتيب ميتوان سيال عامل يك سيكل تبريدي دلخواه مانند سردخانه را با عبور از روي جسم مغناطيس-گرمايي سرد كرد و در سيكل به كار برد.
فناوري تبريد مغناطيسي بدون سيال عامل (مبرد) گازي عمل ميكند و ضريب عملكرد آن (COP) ميتواند بالاتر از سيستم هاي سنتي باشد. در نتيجه كاربرد آن در برخي زمينه باعث كاهش توليد گازهاي مخرب ميشود.
سيكل تبريد مغناطيسي بعنوان فناوري نوظهور در كشورهاي پيشرفته شناخته ميشود و مطالب منتشر شده در مورد آن نسبتاً اندك ميباشد. با اين حال ميتوان گفت كه در كشورمان حتي براي بسياري اين فناوري كاملاً ناشناخته است و تمامي مطالب منتشر شده در مورد آن بسيار اندك و سطحي و گذرا ميباشد و كاربرد آن نيز بسيار محدود ميباشد.

بازدید : 473
11 زمان : 1399:2

تعداد صفحات:135
نوع فايل:word
فهرست مطالب:
چكيده
فصل اول – نيروگاه سيكل تركيبي
توربين گازي
انواع توربين گازي
نيروگاه گازي مدار باز
مقدمه
تاريخچه
پارامترهاي الكتريكي و ترموديناميكي نيروگاه سيكل تركيبي
راندمان و نرخ حرارتي سيكل
بررسي عملكرد در پاره بار
حساسيت به شرايط محيطي
قابليت دسترسي (Availability) و قابليت اطمينان (reliability)
راه اندازي سرد و گرم
بهره برداري و كنترل
قدرت سيستم
كنترل دماي اگزوز
دماي احتراق
كار مخصوص
سوخت
انتخاب محل
تحويل
سرمايه گذاري و بررسي اقتصادي
نگهداري و تعميرات
فصل دوم – كلياتي در رابطه با ژنراتور سنكرون
اساس كار ژنراتور سنكرون
فرم و شكل منحني نيروي الكتروموتوري
پاندولي شدن ژنراتور سنكرون
تحريك ژنراتورهاي بزرگ
ژنراتورهاي بدون جارو
تنظيم سريع ولتاژ ژنراتور
خنك كردن ژنراتور
موازي بستن ژنراتورها (سنكرونيسم)
كنترل اتصال صحيح فازها
پارالل كردن ژنراتورها در عمل
اختلاف فاز
وجود اختلاف پتانسيل
پايداري سيستم انتقال انرژي
مشخصه قدرت
پايداري استاتيكي
پايداري ديناميكي
چگونگي تقويت پايداري
فصل سوم – نيروگاه بخاري
مقدمه
سيكل نيروگاه بخار
سيكل رانكين
اثرات فشار و درجه حرارت بر سيكل رانكين
سيكل باز گرمايش
سيكل بازياب
فصل چهارم – مقايسه نيروگاه توربين گازي – سيكل تركيبي و بخار خشك با نرم افزار WASP
مقدمه
قيمت 1KW قدرت نيروگاه
راندمان
شرايط محيطي
روش كار و حالات مورد مقايسه
نتيجه گيري
حالات مورد مطالعه تكميلي
جمع بندي نهايي
كاربرد بررسيهاي به عمل آمده در انتخاب نيروگاه هاي مورد نياز كشور
فصل پنجم – نيروگاه هاي سيكل تركيبي درايران، توجيه يا عدم توجيه اقتصادي
فصل ششم – تبديل نيروگاه گازي به سيكل تركيبي
مقدمه
تبديل نيروگاه هاي گازي به نيروگاه سيكل تركيبي
هزينه توليد برق
مقايسه نيروگاه گازي و نيروگاه سيكل تركيبي
نيروگاه هاي گازي موجود
صرفه جويي در هزينه با ارقام
خلاصه مطالب
فصل هفتم – نتيجه گيري و پيشنهادات
نتيجه گيري
پيشنهادات
فصل هشتم – پيوست ها
مفاهيم اوليه در اقتصاد الكتريسيته
منحني بار روزانه
منحني تداوم بار
مفهوم بار پايه بار ميانب و بار پيك
پارامترهاي مهم در اقتصاد الكتريسيته
محاسبه هزينه توليد انرژي الكتريكي
مقدمه
هزينه هاي وابسته به ميزان توان نامي
هزينه ساليانه وابسته به ميزان سرمايه گذاري
هزينه ساليانه وابسته به آماده نگهداشتن نيروگاه جهت بهره برداري
هزينه كل ساليانه وابسته به ميزان توان نامي نيروگاه
هزينه هاي وابسته به ميزان انرژي توليدي
هزينه سوخت مصرفي
هزينه هاي وابسته به بهره برداري
هزينه كل ساليانه وابسته به ميزان انرژي الكتريكي
هزينه ساليانه توليد برق نيروگاه
هزينه ويژه توليد برق
هزينه ويژه توليد برق با احتساب مصرف داخلي نيروگاه
مراجع

فهرست اشكال:
توربين گاز
شماتيك توربين گازي
سيكل برايتون
سيكل رانكين
دياگرام سيكل تركيبي (تقريبي)
قيمت توليد الكتريسيته براي سيستم هاي مختلف
تغييرات راندمان در سيستم هاي مختلف
تغييرات نرخ حرارتي برحسب دماي اگزوز كار مخصوص در سيستم بدون مشعل
اثر تعداد توربين گاز سيكل تركيبي بر روي نرخ حرارتي
مقايسه كاركرد سيستم تركيبي و بخاري در پاره بار
تغييرات نرخ حرارتي سيستم مشعل دار با فشار و IGV متغير برحسب بار
تغييرات توان براي سيستم بدون مشعل در دما و فشارهاي مختلف
اثر قابليت دسترسي توربين گاز بر روي قابليت دسترسي سيكل تركيبي
نمودار قابليت دسترسي سيستم سيكل تركيبي
استارت گرم سيستم سيكل تركيبي و چگونگي عمل دمپرها
نحوه راه اندازي نيروگاه sarrebruck
چگونگي راه اندازي سرد و گرم سيستم سيكل تركيبي
تغييرات قدرت سيستم برحسب فشار بخار و دماي احتراق
تغييرات دبي بخار اشباع برحسب دبي هوا و دماي اگزوز
هارمونيك هاي ژنراتور سنكرون
پاندولي شدن ژنراتور سنكرون
مشخصه هاي قدرت خط انتقال كوتاه و بلند
موقعيت مرزي استاتيكي بين دو شبكه ثابت
موقعيت مرزي بين يك نيروگاه و يك شبكه ثابت
اصل سطوح پايداري
تعيين پايداري ديناميكي مطابق اصل سطوح
سيكل رانكين
اثرات فشار و درجه حرارت بر سيكل رانكين
سيكل رانكين با بازگرمكن
سيكل رانكين سوپر هيت
اثرات تغيير درجه حرارت و فشار ووردي به توربين و فشار خروجي از آن
سيكل رانكين با باز گرمايش
تاثيرات فشار باز گرمايش بر راندمان و نرخ حرارتي سيكل رانكين
سيكل ايده آل رانكين
سيكل بازياب ايده آل
سيكل بازياب با open feedwater heater
عمل هيتر بسته
اثرات تعداد هيترها و درجه حرارت آب تغذيه بر روي راندمان سيكل رانكين
نمونه سيكل رانكين يك نيروگاه
نمودار ايده آل T-S مربوط به دياگرام 3-13
قيمت هاي مختلف نمودار خروجي برنامه WASP
مقايسه نيروگاه هاي گازي و بخار
مقايسه نيروگاه هاي گازي و سيكل تركيبي
نمودار افزايش قيمت سبد نفتي اوپك
منحني آنتروپي – درجه حرارت سيكل تركيبي
مبلغ نسبي سرمايه گذاري براي نيروگاه هاي مختلف
مقايسه نيروگاه گازي و سيكل تركيبي
قيمت تمام شده تفكيكي نيروگاه
مزاياي نيروگاه هاي گازي ساده و سيكل تركيبي
نمونه اي از يك منحني روزانه بار
محدوده بار پايه، بار مياني و بار پيك بر روي منحني تداوم بار ساليانه
مدت زمان بهره برداري موثر ساليانه از يك نيروگه
مقدار فاكتور استهلاك a را در وابستگي به ميزان نرخ بهره p و طول عمر نيروگاه
رابطه ميزان هزينه توليد يك كيلو وات ساعت برق نسبت به مدت زمان بهره برداري ساليانه

فهرست جداول:
قيمت نسبي نصب نيروگاه
قيمت نسبي اجزاي سيكل تركيبي نسبت به قيمت كل
تغييرات قدرت و نرخ حرارتي سيستم هاي مختلف
خروج هاي برنامه ريزي شده و اجباري اجزاي سيستم سيكل تركيبي
مقايسه مخارج سيستم هاي نصب شده مختلف مخارج ساخت يك نيروگاه تركيبي در مقايسه با نيروگاه هاي معمولي به شكل زير است
مقايسه تلفات دو ژنراتور
اختلاف سطح ژنراتورها بر حسب قدرت آن ها
مقايسه فاكتورهاي سه نوع نيروگاه مختلف
حالات مورد مقايسه

چكيده:
با استناد بر آمارهاي اعلام شده از سوي وزارت نيرو در سال 1381، ظرفيت مجموع نيروگاه هاي گازي و سيكل تركيبي كشور حدود 13000 مگاوات است كه معادل 44% مجموع كل قدرت نصب شده در كشور ميباشد. نيروگاه هاي سيكل تركيبي به دلايلي از قبيل راندمان بالاتر، طول عمر بيشتر، هزينه توليد برق كمتر و پارامترهاي مهم ديگري كه به تفصيل به آن ها پرداخته خواهد شد از نظر تئوريك بر نيروگاه هاي گازي ارجحيت دارند. اما با توجه به طرحهاي در دست اجراي وزارت نيرو براي تبديل نيروگاه هاي گازي به سيكل تركيبي، ميبايست پارامترهاي مطرح شده در بحث مقايسه به آن سمت سوق داده شوند. در اين مطالعه سعي شده است پس از بررسيهاي علمي و ساختاري سه نوع نيروگاه گازي، بخار و سيكل تركيبي از دو ديدگاه الكتريكي و ترموديناميكي در سه فصل جداگانه، در مبحثي به مقايسه اين سه نوع نيروگاه پرداخته، سپس با ديدي واقع بينانه تر و با تكيه بر آمار و ارقام سازمان توانير از نيروگاه هاي نصب شده داخلي، به مسئله توجيه يا عدم توجيه اقتصادي سيكل هاي تركيبي پرداخته و در نهايت به صورت اختصاصي مبحث تبديل نيروگاه هاي گازي و سيكل تركيبي مطرح گردد.

بازدید : 515
11 زمان : 1399:2

تعداد صفحات:74
نوع فايل:word
فهرست مطالب:
چكيده
مقدمه
فصل اول – كليات موتورهاي جت
تاريخچه
نحوه كاركرد انواع موتورهاي جت
موتورهاي توربوفن
موتورهاي توربوجت
قسمت پس سوز چگونه كار ميكند؟
موتورهاي پالس جت
موتورهاي رم جت
موتورهاي اسكرم جت
اجزاي اصلي موتورهاي جت
كمپرسور
سيستم احتراق
سيستم توربين
توربوشارژ
ساختمان توربو شارژر
فصل دوم – بررسي ترموديناميكي سيكل برايتون و اجزاي مكانيكي سيكل
چرخه برايتون – چرخه ايده آل براي موتورهاي توربين گاز
تاريخچه
اجزاي چرخه برايتون
كمپرسور
احتراق/اتاق احتراق
توربين
مفروضات هوا استاندارد
فرآيندهاي داخلي برگشت پذير
ايزنتروپيك
نسبت گرمايي ويژه
انحراف كارايي واقعي چرخه توربين گاز از ايده آل
فصل سوم – نحوه طراحي موتور
انتخاب توربين
محفظه احتراق
نكته ايمني
روغن كاري
سوخت
جرقه
راه اندازي اوليه
لوله و نازل جت
جريان كمپرسور
فصل چهارم – موتور طراحي شده
محفظه احتراق دولايه
محفظه احتراق يك تكه
منابع و ماخذ
سايت ها

چكيده:
با توجه به تحقيقات به عمل آمده، تاكنون در دانشگاه هاي داخل كشور طرح تحقيقاتي كمي در زمينه ساخت موتورهاي آزمايشگاهي توربين گاز و توربوجت صورت پذيرفته، البته ساخت اين گونه موتورها در گرو داشتن دانش، تكنولوژي و امكانات و آزمايشگاه هاي پيشرفته اي است كه تنها در اختيار تعداد بسيار محدودي از كشورها ميباشد. استفاده از توربوشارژرها يكي از موثرترين راه هاي راه اندازي توربين هاي گازي آزمايشگاهي ميباشد. از آن جا كه طراحي پره هاي توربين و كمپرسور و نحوه ساخت آن ها فرايندي بسيار پيچيده و پرهزينه است، لذا تعداد بسيار محدودي از كشورهاي صنعتي دنيا قادر به ساخت آن ها ميباشند. به همين خاطر مناسب ترين گزينه اي كه بتوان آن را جايگزين كمپرسور و توربين در موتورهاي توربين گازي نمود، توربوشارژرها ميباشند. توربين گاز ساخته شده با توربو شارژر، همه مشخصه هاي معمولي توربين گاز را نشان ميدهد و بستر مناسبي جهت انجام آزمايش و كسب تجربه در عملكرد موتورهاي توربين گاز و توربوجت مي باشد. توربين گازهاي اوليه كه با استفاده از توربو شارژر ساخته شدند، عملكرد مناسبي نداشتند ولي امروزه با بهبود روند طراحي قسمت هاي مختلف سيكل كاري آن ها، عملكردي قابل قبول و مشابه توربين گازهاي معمولي دارند.

مقدمه:
توربين گاز موتوري است كه از نظر مراحل و فازهاي كاري مشابه موتورهاي توربو جت معمولي ميباشد اما به جهت صرفه جويي اقتصادي و كاهش بار طراحي و محدوديت هاي تكنيكي توليد پره توربين و كمپرسور از يك توربو‌ شارژر تجاري مختص خودرو استفاده ميشود. ميتوانيم با تغيير در ساختار يك موتور توربو شارژر و همچنين افزودن محفظه احتراق؛ نوع سوخت رساني، نحوه هدايت و سرعت بخشيدن به كاركرد اين نوع موتور، نيروي جلو برندگي با فشار بالايي ايجاد كنيم.
در طراحي و ساخت موتور توربو شارژر جت، از قطعاتي نظير محفظه احتراق، توربو شارژر، استارت و برق رساني، شمع، سيستم سوخت رساني، استفاده شده است. در اين طرح از فن هواي توربوشارژر بعنوان كمپرسور و از پره دود بعنوان توربين موتور توربوجت استفاده ميشود. با طراحي و ساخت محفظه احتراق مناسب و سيستم سوخت رساني، روغن كاري و خنك كاري لازم، ميتوان اين نمونه آزمايشي را در آزمايشگاه ترموديناميك و انتقال حرارت و با توجه به پذيرش دانشجو در گرايش هاي مختلف رشته هوافضا، در آزمايشگاه پيشرانش و احتراق مورد استفاده قرار داد. در صورتي كه اين طرح پارامترهاي مورد نظر را برآورده كند، ميتوان آن را با بهينه سازي و انجام آزمايشات و بدست آوردن كارايي مناسب، بعنوان موتور پيشران در هواپيماهاي RPV و در كاربردهاي مهندسي كه در آن ها در فضاي كم به كار شفت نياز است.

بازدید : 470
11 زمان : 1399:2

تعداد صفحات:38
نوع فايل:word
فهرست مطلب:
هيدرولوژي چيست ؟
سيكل (چرخه) هيدرولوژي
بارندگي
تبخير
مسائل شناخت آب هاي سطحي
هواشناسي و هيدرولوژي
هواشناسي عمومي
مقدمه
بارندگي
تبخير
عناصر هواشناسي
ايستگاه سينوپتيك
باران سنجي
باران سنج هاي ساده
باران سنج روزانه معمولي
باران سنج ذخيره اي
بارن سنج هاي ثبات
باران نگار وزني
باران نگار سيفوني
باران نگار ترازويي
انواع تشت تبخير
تشت استاندارد انگليسي
تشت كلاس A (استاندارد آمريكايي)
تشت استاندارد روسي
انواع دماسنج ها
دما
دماسنج معمولي
دماسنج حداكثر
دماسنج حداقل
دماسنج حداقل – حداكثر
دمانگار
دماسنج گازي
نگاه اجمالي
دماسنج گازي ساده
خطاي موجود در دماسنج گازي
اصلاح دماسنج گازي
اصلاح فشارسنج جيوه‌اي
رطوبت سنج
سايكرومتر
رطوبت نگار
رطوبت – دمانگار
عوامل تغيير دما
فصول و طول روز
جريان هاي اقيانوسي
باد
عرض جغرافيايي
خشكي ها
ارتفاعات
پوشش ابر
مشخصه هاي سطوح
جهت گيري دامنه ها
درجه حرارت هوا
آنومالي دمايي
تغيير قائم دما
دماسنج
مقياس‌هاي دماسنجي
سيستم فارنهايت (Fahrenheit)
سيستم سلزيوس (Celsiuse) (سانتي گراد)
سيستم مطلق (ِِAbsolute)
دماسنج حداقل
دمانگار (Thermograph)
سيستم ترموديناميكي
نگاه اجمالي
سيستم
محيط
مثال هاي واقعي سيستم و محيط
ترموديناميك
كميت هاي ماكروسكوپيكي
كميتهاي ميكروسكوپيكي
مقايسه ديدگاه هاي ماكروسكوپيكي و ميكروسكوپيكي
تفاوت ديدگاه ماكروسكوپيكي و ميكروسكوپيكي
فشار هوا
واحد فشار هوا
پراكندگي افقي فشار هوا
سيستم ناوه (Trough)
سيستم پشته (Ridge)
كمربدهاي فشار در جهان (Planetary Pressure Belts)
ابزارهاي فشار سنجي
فشار سنج جيوه اي
فشار سنج فلزي
فشار نگار
آشنايي با ماهواره هاي هواشناسي
ايستگاه هاي هوا شناسي در ايران
اهميت هواشناسى
پيش بينى 24 ساعت آينده وضعيت هوا
وضعيت ايران در جهان
درصد خطا در ايران
دليل عدم استفاده از باران مصنوعى
نحوه تشكيل ابر و باران مصنوعى
از بين بردن هواى آلوده
مشكلات تغييرات فصل
تفاوت دماى شرق و غرب تهران
تفاوت بارندگى در نقاط مختلف كشور
دليل ثبت اطلاعات هواشناسى جهان در سازمان مربوطه
تعداد كل ايستگاه هاى هواشناسى در ايران
آمار ماهيانه ايستگاه سينوپتيك تهران از بدو تاسيس تا سال 2004
نمونه عكس هاي بازديد از ايستگاه سينوپتيك شهرستان شوشتر

بازدید : 500
11 زمان : 1399:2

تعداد صفحات:64
نوع فايل:word
فهرست مطالب:
چكيده
پيشگفتار
فصل اول
برهم كنش يون ها در محلول و ترموديناميك آن ها
مقدمه
ترموديناميك محلول هاي الكتروليت
رفتار غير ايده آل محلول هاي الكتروليت
فعاليت يون ها در محلول الكتروليت
ضريب فعاليت يون ها در محلول الكتروليت
قدرت يوني
پتانسيل شيميايي محلول هاي الكتروليت
توابع ترموديناميكي اضافي محلول هاي الكتروليت
نظريه دباي – هوكل
قانون حدي دباي – هوكل
قانون توسعه يافته دباي – هوكل
برخي نظريه هاي ديگر در محاسبه ضريب فعاليت در غلظت هاي بالاتر
نارسايي هاي نظريه دباي – هوكل و بحث تجمع يوني
تعيين تجربي ضريب فعاليت
فصل دوم
تجمع يوني
مقدمه
تجمع يوني
نظريه تجمع يوني
شواهد و اشكال تجمع يوني
عوامل موثر بر تجمع يوني
اثر ثابت دي الكتريك
اثر غلظت
اثر دما
اثر شعاع و بار يون
فصل سوم
روش هاي تجربي در اين پايان نامه، مواد و وسائل مورد استفاده
مقدمه
شرح مواد مصرفي
سديم فلوئوريد NaF
پتاسيم نيترات KNO3
اتانول
سديم كلريد NaCl
آب
شرح وسايل و دقت آن ها
روش هاي تجربي
روش تبخير حلال در اندازه گيري قابليت حل شدن سديم فلوئوريد در دماي 25
آب خالص
محلول پتاسيم نيترات با غلظت هاي مختلف
مخلوط آب و اتانول با درصدهاي جرمي مختلف اتانول
نشر اتمي
نشر به وسيله اتم ها و يون هاي بنيادي
طيف سنجي نشر اتمي
فصل چهارم
نتايج تجربي
تعيين قابليت حل شدن سديم فلوئوريد در آب خالص در دماي 25
بستگي قابليت حل شدن سديم فلوئوريد با قدرت يوني در دماي 25
اثر ثابت دي الكتريك حلال مخلوط (آب و اتانول) بر قابليت حل شدن سديم فلوئوريد در دماي 25 به روش تبخير حلال
فصل پنجم
بحث و نتيجه گيري
مقدمه
محاسبه ثابت حاصلضرب حلاليت غلظتي سديم فلوئوريد در آب خالص و در دماي 25
محاسبه ثابت حاصلضرب حلاليت ترموديناميكي سديم فلوئوريد در آب خالص و در دماي 25
محاسبه ثابت حاصلضرب حلاليت دباي – هوكلي سديم فلوئوريد در آب خالص و در دماي 25
ترموديناميك تشكيل زوج يون
پيوست

فهرست جداول و اشكال:
بستگي لگاريتم ضريب فعاليت چند الكتروليت با غلظت
بستگي لگاريتم ضريب فعاليت چند الكتروليت با قدرت يوني
مدل دباي – هوكل براي اتمسفر يوني يك يون مركزي
كنترل قانون حدي دباي – هوكل در الكتروليت هاي مختلف
مقايسه قانون توسعه يافته و قانون حدي دباي – هوكل
ارتباط a با q براي تشكيل زوج يون
تعداد يون ها در لايه اي به ضخامت 1/0 در فاصله r از يون مركزي
گونه هاي مختلف زوج يون
وابستگي محتواي زوج يون با غلظت در الكتروليت هاي مختلف
مقادير ثابت هاي فيزيكي نمك سديم فلوئوريد
مقادير ثابت هاي فيزيكي نمك پتاسيم نيترات
مقادير ثابت هاي فيزيكي اتانول
مقادير ثابت هاي فيزيكي نمك سديم كلريد
قابليت حل شدن سديم فلوئوريد در آب خالص در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات M05/0 در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات M1/0 در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات M2/0 در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات M3/0 در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات M5/0 در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات با غلظت هاي مختلف در دماي 25 به روش نشر اتمي شعله اي
نمودار تغييرات قابليت حل شدن سديم فلوئوريد برحسب قدرت يوني محلول
نمودار تغييرات قابليت حل شدن سديم فلوئوريد بر حسب جذر قدرت يوني محلول
نمودار تغييرات لگاريتم قابليت حل شدن سديم فلوئوريد برحسب قدرت يوني محلول
نمودار تغييرات لگاريتم قابليت حل شدن سديم فلوئوريد برحسب جذر قدرت يوني محلول
قابليت حل شدن سديم فلوئوريد در مخلوط آب و اتانول با درصد جرمي 5% اتانول در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در مخلوط آب و اتانول با درصد جرمي 10% اتانول در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در مخلوط آب و اتانول با درصد جرمي 15% اتانول در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در مخلوط آب و اتانول با درصد جرمي 20% اتانول در دماي 25 به روش تبخير حلال
نمودار تغييرات قابليت حل شدن سديم فلوئوريد برحسب ثابت دي الكتريك محلول
نمودار تغييرات قابليت حل شدن سديم فلوئوريد برحسب معكوس ثابت دي الكتريك محلول
توابع ترموديناميكي

پيشگفتار:
بسياري از پديده هاي زيستي، طبيعي و نيز فرآيندهاي شيميايي در محلول هاي آبي صورت ميگيرند. بنابراين مطالعه محلول هاي آبي از تركيبات مختلف ضروري به نظر ميرسد تا با توجه به آن، اين فرآيندهاي زيستي، طبيعي، شيميايي و .. را بتوان بهتر مورد بررسي قرار داد.
بحث اصلي ما مربوط به محلول هاي الكتروليت و نيز چگونگي رفتار محلول هاي الكتروليت از لحاظ ايده آل و غير ايده آل بودن ميباشد.
پيشنهاد فرضيه تفكيك يوني در سال 1884 توسط آرنيوس زمينه بسيار مساعدي را براي مطالعه محلول هاي الكتروليت فراهم ساخت. نظريه تفكيك يوني آرنيوس در زمان خود توانست برخي از رفتار محلول هاي الكتروليت را توضيح دهد ولي با وجود اين بسياري از خواص محلول هاي الكتروليت را بر پايه نظريه آرنيوس نميتوان توضيح داد. در نظريه آرنيوس توزيع يون ها در محلول كاملاً اتفاقي فرض ميشود و علاوه بر آن از نيروهاي حاصل از بر هم كنش يون ها نيز صرف نظر ميگردد. در اين شرايط ميبايستي ضريب فعاليت يون ها در محلول همواره برابر با يك شود. اين نتيجه گيري با تجربه و واقعيت سازگار نميباشد و لذا اين مدل براي بيان رفتار محلول هاي الكتروليت مناسب نيست.
مدل نسبتاً واقعي كه توسط قش دانشمند هندي براي توزيع يون ها در محلول پيشنهاد شد، بدين ترتيب كه نظم يون ها در محلول تا حدودي شبيه نظم آن ها در شبكه جامد بلوري است. اما فاصله بين آن ها در محلول از فاصله آن ها در جامد يوني بيشتر است. در اين مدل نيروهاي بين يوني كه جنبه الكترواستاتيكي دارند به علت دخالت ثابت دي الكتريك حلال و زيادتر بودن فاصله بين يون ها كاهش مييابد. بر پايه مدل قش ممكن است بتوان برخي از رفتار الكتروليت ها در محلول را بطور كيفي تجزيه و تحليل نمود. با وجود اين، اين مدل هم در موارد بسياري از عهده توجيه نتايج مربوط به الكتروليت ها برنمي آيد.
امروزه از راه مطالعات با پرتو x آشكار گرديده است كه آرايش يون ها در محلول الكتروليت ها شبيه آرايش يون ها در جامد يوني نيست، بلكه در محلول به دليل جنبش هاي گرمايي و برخي عوامل ديگر، آرايش يون ها نسبت به حالت جامد در هم ريخته تر ميباشد.
تئوري جديد الكتروليت ها به كار دباي و هوكل در سال 1923 بر ميگردد. دباي و هوكل در مدل خودشان فرض كردند كه يك الكتروليت قوي بطور كامل به يون هاي متقارن كروي و سخت تفكيك ميشوند. برهم كنش بين يون ها به كمك قانون كولومبيك با فرض اينكه محيط داراي ثابت دي الكتريك حلال خالص باشد محاسبه شد. با تقريب هاي رياضي مناسب، اين تئوري منجر به معادله اي براي محاسبه ميانگين ضريب فعاليت يك الكتروليت قوي در محلول رقيق مبدل شد.
مطابق اين مدل، هريون تحت تاثير دائمي اتمسفر يوني اطراف خود قرار دارد و نسبت به آن بر هم كنش نشان ميدهد. اين برهم كنش باعث ميشود كه محلول داراي رفتار غير ايده آل باشد.
در نظريه دباي – هوكل انحراف از حالت ايده آل به نيروهاي فيزيكي دوربرد (مانند نيروهاي كولومبي) نسبت داده ميشود، ولي بين يون هاي داخل محلول علاوه
برقرار بودن نيروهاي جاذبه الكترواستاتيك كولومبي، نيروهاي ديگري مانند نيروهاي كوتاه برد و .. نيز وجود دارد. وجود نيروهاي كوتاه برد سبب تشكيل زوج يون مي گردد. اين امر اولين بار توسط بجروم پيشنهاد شد.
بجروم با استفاده از مدلي مشابه مدل دباي و هوكل براي محلول هاي رقيق، احتمال يافتن يون هاي با بار مخالف را در فاصله اي معين از يون مركزي ترسيم كرد. منحني توزيع، يك مقدار مينيموم را در فاصله اي كه كار جدا نمودن دو يون با بار مخالف چهار برابر بزرگتر از ميانگين انرژي جنبشي در هر درجه آزادي است را نشان ميدهد.
براي يون هاي بزرگ كه خيلي زياد نميتوانند به هم نزديك شوند، فرض ميشود كه معادله حدي دباي – هوكل براي آن ها رضايت بخش ميباشد. اما يون هاي كوچك قادرند خيلي به يكديگر نزديك شده و تشكيل زوج يون دهند.
زوج يون تجمع يافته بعنوان مولكول خنثي با ضريب فعاليت واحد، در تعادل با يون هاي آزاد شركت ميكند.
بر طبق آن چه تا به حال گفته شد از ديدگاه الكترواستاتيكي، رفتار غير ايده آل محلول هاي الكتروليت ممكن است قسمتي بر اثر عوامل فيزيكي و قسمتي بر اثر عوامل شيميايي باشد. در نظريه دباي – هوكل كه تفكيك يوني الكتروليت ها را در محلول كامل مي انگارد، انحراف از حالت ايده آل را به نيروهاي فيزيكي دوربرد نسبت ميدهد كه برحسب ضريب فعاليت مورد ارزيابي قرار ميگيرد و زوج شدن يون ها يا تجمع يوني در محلول بر طبق نظريه بجروم، از عوامل شيميايي ميباشد.

تعداد صفحات : 153

درباره ما
موضوعات
آمار سایت
  • کل مطالب : 1532
  • کل نظرات : 0
  • افراد آنلاین : 14
  • تعداد اعضا : 3
  • بازدید امروز : 1179
  • بازدید کننده امروز : 1
  • باردید دیروز : 453
  • بازدید کننده دیروز : 0
  • گوگل امروز : 2
  • گوگل دیروز : 1
  • بازدید هفته : 1937
  • بازدید ماه : 6179
  • بازدید سال : 19800
  • بازدید کلی : 1174660
  • <
    آرشیو
    اطلاعات کاربری
    نام کاربری :
    رمز عبور :
  • فراموشی رمز عبور؟
  • خبر نامه


    معرفی وبلاگ به یک دوست


    ایمیل شما :

    ایمیل دوست شما :



    کدهای اختصاصی