loading...

بهترين و سريعترين مرجع دانلود كارآموزي و پروژه و پايان نامه

دانلود پايان نامه و پروژه و كارآموزي در تمامي رشته هاي دانشگاهي

بازدید : 500
11 زمان : 1399:2

تعداد صفحات:64
نوع فايل:word
فهرست مطالب:
چكيده
پيشگفتار
فصل اول
برهم كنش يون ها در محلول و ترموديناميك آن ها
مقدمه
ترموديناميك محلول هاي الكتروليت
رفتار غير ايده آل محلول هاي الكتروليت
فعاليت يون ها در محلول الكتروليت
ضريب فعاليت يون ها در محلول الكتروليت
قدرت يوني
پتانسيل شيميايي محلول هاي الكتروليت
توابع ترموديناميكي اضافي محلول هاي الكتروليت
نظريه دباي – هوكل
قانون حدي دباي – هوكل
قانون توسعه يافته دباي – هوكل
برخي نظريه هاي ديگر در محاسبه ضريب فعاليت در غلظت هاي بالاتر
نارسايي هاي نظريه دباي – هوكل و بحث تجمع يوني
تعيين تجربي ضريب فعاليت
فصل دوم
تجمع يوني
مقدمه
تجمع يوني
نظريه تجمع يوني
شواهد و اشكال تجمع يوني
عوامل موثر بر تجمع يوني
اثر ثابت دي الكتريك
اثر غلظت
اثر دما
اثر شعاع و بار يون
فصل سوم
روش هاي تجربي در اين پايان نامه، مواد و وسائل مورد استفاده
مقدمه
شرح مواد مصرفي
سديم فلوئوريد NaF
پتاسيم نيترات KNO3
اتانول
سديم كلريد NaCl
آب
شرح وسايل و دقت آن ها
روش هاي تجربي
روش تبخير حلال در اندازه گيري قابليت حل شدن سديم فلوئوريد در دماي 25
آب خالص
محلول پتاسيم نيترات با غلظت هاي مختلف
مخلوط آب و اتانول با درصدهاي جرمي مختلف اتانول
نشر اتمي
نشر به وسيله اتم ها و يون هاي بنيادي
طيف سنجي نشر اتمي
فصل چهارم
نتايج تجربي
تعيين قابليت حل شدن سديم فلوئوريد در آب خالص در دماي 25
بستگي قابليت حل شدن سديم فلوئوريد با قدرت يوني در دماي 25
اثر ثابت دي الكتريك حلال مخلوط (آب و اتانول) بر قابليت حل شدن سديم فلوئوريد در دماي 25 به روش تبخير حلال
فصل پنجم
بحث و نتيجه گيري
مقدمه
محاسبه ثابت حاصلضرب حلاليت غلظتي سديم فلوئوريد در آب خالص و در دماي 25
محاسبه ثابت حاصلضرب حلاليت ترموديناميكي سديم فلوئوريد در آب خالص و در دماي 25
محاسبه ثابت حاصلضرب حلاليت دباي – هوكلي سديم فلوئوريد در آب خالص و در دماي 25
ترموديناميك تشكيل زوج يون
پيوست

فهرست جداول و اشكال:
بستگي لگاريتم ضريب فعاليت چند الكتروليت با غلظت
بستگي لگاريتم ضريب فعاليت چند الكتروليت با قدرت يوني
مدل دباي – هوكل براي اتمسفر يوني يك يون مركزي
كنترل قانون حدي دباي – هوكل در الكتروليت هاي مختلف
مقايسه قانون توسعه يافته و قانون حدي دباي – هوكل
ارتباط a با q براي تشكيل زوج يون
تعداد يون ها در لايه اي به ضخامت 1/0 در فاصله r از يون مركزي
گونه هاي مختلف زوج يون
وابستگي محتواي زوج يون با غلظت در الكتروليت هاي مختلف
مقادير ثابت هاي فيزيكي نمك سديم فلوئوريد
مقادير ثابت هاي فيزيكي نمك پتاسيم نيترات
مقادير ثابت هاي فيزيكي اتانول
مقادير ثابت هاي فيزيكي نمك سديم كلريد
قابليت حل شدن سديم فلوئوريد در آب خالص در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات M05/0 در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات M1/0 در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات M2/0 در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات M3/0 در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات M5/0 در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات با غلظت هاي مختلف در دماي 25 به روش نشر اتمي شعله اي
نمودار تغييرات قابليت حل شدن سديم فلوئوريد برحسب قدرت يوني محلول
نمودار تغييرات قابليت حل شدن سديم فلوئوريد بر حسب جذر قدرت يوني محلول
نمودار تغييرات لگاريتم قابليت حل شدن سديم فلوئوريد برحسب قدرت يوني محلول
نمودار تغييرات لگاريتم قابليت حل شدن سديم فلوئوريد برحسب جذر قدرت يوني محلول
قابليت حل شدن سديم فلوئوريد در مخلوط آب و اتانول با درصد جرمي 5% اتانول در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در مخلوط آب و اتانول با درصد جرمي 10% اتانول در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در مخلوط آب و اتانول با درصد جرمي 15% اتانول در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در مخلوط آب و اتانول با درصد جرمي 20% اتانول در دماي 25 به روش تبخير حلال
نمودار تغييرات قابليت حل شدن سديم فلوئوريد برحسب ثابت دي الكتريك محلول
نمودار تغييرات قابليت حل شدن سديم فلوئوريد برحسب معكوس ثابت دي الكتريك محلول
توابع ترموديناميكي

پيشگفتار:
بسياري از پديده هاي زيستي، طبيعي و نيز فرآيندهاي شيميايي در محلول هاي آبي صورت ميگيرند. بنابراين مطالعه محلول هاي آبي از تركيبات مختلف ضروري به نظر ميرسد تا با توجه به آن، اين فرآيندهاي زيستي، طبيعي، شيميايي و .. را بتوان بهتر مورد بررسي قرار داد.
بحث اصلي ما مربوط به محلول هاي الكتروليت و نيز چگونگي رفتار محلول هاي الكتروليت از لحاظ ايده آل و غير ايده آل بودن ميباشد.
پيشنهاد فرضيه تفكيك يوني در سال 1884 توسط آرنيوس زمينه بسيار مساعدي را براي مطالعه محلول هاي الكتروليت فراهم ساخت. نظريه تفكيك يوني آرنيوس در زمان خود توانست برخي از رفتار محلول هاي الكتروليت را توضيح دهد ولي با وجود اين بسياري از خواص محلول هاي الكتروليت را بر پايه نظريه آرنيوس نميتوان توضيح داد. در نظريه آرنيوس توزيع يون ها در محلول كاملاً اتفاقي فرض ميشود و علاوه بر آن از نيروهاي حاصل از بر هم كنش يون ها نيز صرف نظر ميگردد. در اين شرايط ميبايستي ضريب فعاليت يون ها در محلول همواره برابر با يك شود. اين نتيجه گيري با تجربه و واقعيت سازگار نميباشد و لذا اين مدل براي بيان رفتار محلول هاي الكتروليت مناسب نيست.
مدل نسبتاً واقعي كه توسط قش دانشمند هندي براي توزيع يون ها در محلول پيشنهاد شد، بدين ترتيب كه نظم يون ها در محلول تا حدودي شبيه نظم آن ها در شبكه جامد بلوري است. اما فاصله بين آن ها در محلول از فاصله آن ها در جامد يوني بيشتر است. در اين مدل نيروهاي بين يوني كه جنبه الكترواستاتيكي دارند به علت دخالت ثابت دي الكتريك حلال و زيادتر بودن فاصله بين يون ها كاهش مييابد. بر پايه مدل قش ممكن است بتوان برخي از رفتار الكتروليت ها در محلول را بطور كيفي تجزيه و تحليل نمود. با وجود اين، اين مدل هم در موارد بسياري از عهده توجيه نتايج مربوط به الكتروليت ها برنمي آيد.
امروزه از راه مطالعات با پرتو x آشكار گرديده است كه آرايش يون ها در محلول الكتروليت ها شبيه آرايش يون ها در جامد يوني نيست، بلكه در محلول به دليل جنبش هاي گرمايي و برخي عوامل ديگر، آرايش يون ها نسبت به حالت جامد در هم ريخته تر ميباشد.
تئوري جديد الكتروليت ها به كار دباي و هوكل در سال 1923 بر ميگردد. دباي و هوكل در مدل خودشان فرض كردند كه يك الكتروليت قوي بطور كامل به يون هاي متقارن كروي و سخت تفكيك ميشوند. برهم كنش بين يون ها به كمك قانون كولومبيك با فرض اينكه محيط داراي ثابت دي الكتريك حلال خالص باشد محاسبه شد. با تقريب هاي رياضي مناسب، اين تئوري منجر به معادله اي براي محاسبه ميانگين ضريب فعاليت يك الكتروليت قوي در محلول رقيق مبدل شد.
مطابق اين مدل، هريون تحت تاثير دائمي اتمسفر يوني اطراف خود قرار دارد و نسبت به آن بر هم كنش نشان ميدهد. اين برهم كنش باعث ميشود كه محلول داراي رفتار غير ايده آل باشد.
در نظريه دباي – هوكل انحراف از حالت ايده آل به نيروهاي فيزيكي دوربرد (مانند نيروهاي كولومبي) نسبت داده ميشود، ولي بين يون هاي داخل محلول علاوه
برقرار بودن نيروهاي جاذبه الكترواستاتيك كولومبي، نيروهاي ديگري مانند نيروهاي كوتاه برد و .. نيز وجود دارد. وجود نيروهاي كوتاه برد سبب تشكيل زوج يون مي گردد. اين امر اولين بار توسط بجروم پيشنهاد شد.
بجروم با استفاده از مدلي مشابه مدل دباي و هوكل براي محلول هاي رقيق، احتمال يافتن يون هاي با بار مخالف را در فاصله اي معين از يون مركزي ترسيم كرد. منحني توزيع، يك مقدار مينيموم را در فاصله اي كه كار جدا نمودن دو يون با بار مخالف چهار برابر بزرگتر از ميانگين انرژي جنبشي در هر درجه آزادي است را نشان ميدهد.
براي يون هاي بزرگ كه خيلي زياد نميتوانند به هم نزديك شوند، فرض ميشود كه معادله حدي دباي – هوكل براي آن ها رضايت بخش ميباشد. اما يون هاي كوچك قادرند خيلي به يكديگر نزديك شده و تشكيل زوج يون دهند.
زوج يون تجمع يافته بعنوان مولكول خنثي با ضريب فعاليت واحد، در تعادل با يون هاي آزاد شركت ميكند.
بر طبق آن چه تا به حال گفته شد از ديدگاه الكترواستاتيكي، رفتار غير ايده آل محلول هاي الكتروليت ممكن است قسمتي بر اثر عوامل فيزيكي و قسمتي بر اثر عوامل شيميايي باشد. در نظريه دباي – هوكل كه تفكيك يوني الكتروليت ها را در محلول كامل مي انگارد، انحراف از حالت ايده آل را به نيروهاي فيزيكي دوربرد نسبت ميدهد كه برحسب ضريب فعاليت مورد ارزيابي قرار ميگيرد و زوج شدن يون ها يا تجمع يوني در محلول بر طبق نظريه بجروم، از عوامل شيميايي ميباشد.

تعداد صفحات:64
نوع فايل:word
فهرست مطالب:
چكيده
پيشگفتار
فصل اول
برهم كنش يون ها در محلول و ترموديناميك آن ها
مقدمه
ترموديناميك محلول هاي الكتروليت
رفتار غير ايده آل محلول هاي الكتروليت
فعاليت يون ها در محلول الكتروليت
ضريب فعاليت يون ها در محلول الكتروليت
قدرت يوني
پتانسيل شيميايي محلول هاي الكتروليت
توابع ترموديناميكي اضافي محلول هاي الكتروليت
نظريه دباي – هوكل
قانون حدي دباي – هوكل
قانون توسعه يافته دباي – هوكل
برخي نظريه هاي ديگر در محاسبه ضريب فعاليت در غلظت هاي بالاتر
نارسايي هاي نظريه دباي – هوكل و بحث تجمع يوني
تعيين تجربي ضريب فعاليت
فصل دوم
تجمع يوني
مقدمه
تجمع يوني
نظريه تجمع يوني
شواهد و اشكال تجمع يوني
عوامل موثر بر تجمع يوني
اثر ثابت دي الكتريك
اثر غلظت
اثر دما
اثر شعاع و بار يون
فصل سوم
روش هاي تجربي در اين پايان نامه، مواد و وسائل مورد استفاده
مقدمه
شرح مواد مصرفي
سديم فلوئوريد NaF
پتاسيم نيترات KNO3
اتانول
سديم كلريد NaCl
آب
شرح وسايل و دقت آن ها
روش هاي تجربي
روش تبخير حلال در اندازه گيري قابليت حل شدن سديم فلوئوريد در دماي 25
آب خالص
محلول پتاسيم نيترات با غلظت هاي مختلف
مخلوط آب و اتانول با درصدهاي جرمي مختلف اتانول
نشر اتمي
نشر به وسيله اتم ها و يون هاي بنيادي
طيف سنجي نشر اتمي
فصل چهارم
نتايج تجربي
تعيين قابليت حل شدن سديم فلوئوريد در آب خالص در دماي 25
بستگي قابليت حل شدن سديم فلوئوريد با قدرت يوني در دماي 25
اثر ثابت دي الكتريك حلال مخلوط (آب و اتانول) بر قابليت حل شدن سديم فلوئوريد در دماي 25 به روش تبخير حلال
فصل پنجم
بحث و نتيجه گيري
مقدمه
محاسبه ثابت حاصلضرب حلاليت غلظتي سديم فلوئوريد در آب خالص و در دماي 25
محاسبه ثابت حاصلضرب حلاليت ترموديناميكي سديم فلوئوريد در آب خالص و در دماي 25
محاسبه ثابت حاصلضرب حلاليت دباي – هوكلي سديم فلوئوريد در آب خالص و در دماي 25
ترموديناميك تشكيل زوج يون
پيوست

فهرست جداول و اشكال:
بستگي لگاريتم ضريب فعاليت چند الكتروليت با غلظت
بستگي لگاريتم ضريب فعاليت چند الكتروليت با قدرت يوني
مدل دباي – هوكل براي اتمسفر يوني يك يون مركزي
كنترل قانون حدي دباي – هوكل در الكتروليت هاي مختلف
مقايسه قانون توسعه يافته و قانون حدي دباي – هوكل
ارتباط a با q براي تشكيل زوج يون
تعداد يون ها در لايه اي به ضخامت 1/0 در فاصله r از يون مركزي
گونه هاي مختلف زوج يون
وابستگي محتواي زوج يون با غلظت در الكتروليت هاي مختلف
مقادير ثابت هاي فيزيكي نمك سديم فلوئوريد
مقادير ثابت هاي فيزيكي نمك پتاسيم نيترات
مقادير ثابت هاي فيزيكي اتانول
مقادير ثابت هاي فيزيكي نمك سديم كلريد
قابليت حل شدن سديم فلوئوريد در آب خالص در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات M05/0 در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات M1/0 در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات M2/0 در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات M3/0 در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات M5/0 در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در حضور پتاسيم نيترات با غلظت هاي مختلف در دماي 25 به روش نشر اتمي شعله اي
نمودار تغييرات قابليت حل شدن سديم فلوئوريد برحسب قدرت يوني محلول
نمودار تغييرات قابليت حل شدن سديم فلوئوريد بر حسب جذر قدرت يوني محلول
نمودار تغييرات لگاريتم قابليت حل شدن سديم فلوئوريد برحسب قدرت يوني محلول
نمودار تغييرات لگاريتم قابليت حل شدن سديم فلوئوريد برحسب جذر قدرت يوني محلول
قابليت حل شدن سديم فلوئوريد در مخلوط آب و اتانول با درصد جرمي 5% اتانول در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در مخلوط آب و اتانول با درصد جرمي 10% اتانول در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در مخلوط آب و اتانول با درصد جرمي 15% اتانول در دماي 25 به روش تبخير حلال
قابليت حل شدن سديم فلوئوريد در مخلوط آب و اتانول با درصد جرمي 20% اتانول در دماي 25 به روش تبخير حلال
نمودار تغييرات قابليت حل شدن سديم فلوئوريد برحسب ثابت دي الكتريك محلول
نمودار تغييرات قابليت حل شدن سديم فلوئوريد برحسب معكوس ثابت دي الكتريك محلول
توابع ترموديناميكي

پيشگفتار:
بسياري از پديده هاي زيستي، طبيعي و نيز فرآيندهاي شيميايي در محلول هاي آبي صورت ميگيرند. بنابراين مطالعه محلول هاي آبي از تركيبات مختلف ضروري به نظر ميرسد تا با توجه به آن، اين فرآيندهاي زيستي، طبيعي، شيميايي و .. را بتوان بهتر مورد بررسي قرار داد.
بحث اصلي ما مربوط به محلول هاي الكتروليت و نيز چگونگي رفتار محلول هاي الكتروليت از لحاظ ايده آل و غير ايده آل بودن ميباشد.
پيشنهاد فرضيه تفكيك يوني در سال 1884 توسط آرنيوس زمينه بسيار مساعدي را براي مطالعه محلول هاي الكتروليت فراهم ساخت. نظريه تفكيك يوني آرنيوس در زمان خود توانست برخي از رفتار محلول هاي الكتروليت را توضيح دهد ولي با وجود اين بسياري از خواص محلول هاي الكتروليت را بر پايه نظريه آرنيوس نميتوان توضيح داد. در نظريه آرنيوس توزيع يون ها در محلول كاملاً اتفاقي فرض ميشود و علاوه بر آن از نيروهاي حاصل از بر هم كنش يون ها نيز صرف نظر ميگردد. در اين شرايط ميبايستي ضريب فعاليت يون ها در محلول همواره برابر با يك شود. اين نتيجه گيري با تجربه و واقعيت سازگار نميباشد و لذا اين مدل براي بيان رفتار محلول هاي الكتروليت مناسب نيست.
مدل نسبتاً واقعي كه توسط قش دانشمند هندي براي توزيع يون ها در محلول پيشنهاد شد، بدين ترتيب كه نظم يون ها در محلول تا حدودي شبيه نظم آن ها در شبكه جامد بلوري است. اما فاصله بين آن ها در محلول از فاصله آن ها در جامد يوني بيشتر است. در اين مدل نيروهاي بين يوني كه جنبه الكترواستاتيكي دارند به علت دخالت ثابت دي الكتريك حلال و زيادتر بودن فاصله بين يون ها كاهش مييابد. بر پايه مدل قش ممكن است بتوان برخي از رفتار الكتروليت ها در محلول را بطور كيفي تجزيه و تحليل نمود. با وجود اين، اين مدل هم در موارد بسياري از عهده توجيه نتايج مربوط به الكتروليت ها برنمي آيد.
امروزه از راه مطالعات با پرتو x آشكار گرديده است كه آرايش يون ها در محلول الكتروليت ها شبيه آرايش يون ها در جامد يوني نيست، بلكه در محلول به دليل جنبش هاي گرمايي و برخي عوامل ديگر، آرايش يون ها نسبت به حالت جامد در هم ريخته تر ميباشد.
تئوري جديد الكتروليت ها به كار دباي و هوكل در سال 1923 بر ميگردد. دباي و هوكل در مدل خودشان فرض كردند كه يك الكتروليت قوي بطور كامل به يون هاي متقارن كروي و سخت تفكيك ميشوند. برهم كنش بين يون ها به كمك قانون كولومبيك با فرض اينكه محيط داراي ثابت دي الكتريك حلال خالص باشد محاسبه شد. با تقريب هاي رياضي مناسب، اين تئوري منجر به معادله اي براي محاسبه ميانگين ضريب فعاليت يك الكتروليت قوي در محلول رقيق مبدل شد.
مطابق اين مدل، هريون تحت تاثير دائمي اتمسفر يوني اطراف خود قرار دارد و نسبت به آن بر هم كنش نشان ميدهد. اين برهم كنش باعث ميشود كه محلول داراي رفتار غير ايده آل باشد.
در نظريه دباي – هوكل انحراف از حالت ايده آل به نيروهاي فيزيكي دوربرد (مانند نيروهاي كولومبي) نسبت داده ميشود، ولي بين يون هاي داخل محلول علاوه
برقرار بودن نيروهاي جاذبه الكترواستاتيك كولومبي، نيروهاي ديگري مانند نيروهاي كوتاه برد و .. نيز وجود دارد. وجود نيروهاي كوتاه برد سبب تشكيل زوج يون مي گردد. اين امر اولين بار توسط بجروم پيشنهاد شد.
بجروم با استفاده از مدلي مشابه مدل دباي و هوكل براي محلول هاي رقيق، احتمال يافتن يون هاي با بار مخالف را در فاصله اي معين از يون مركزي ترسيم كرد. منحني توزيع، يك مقدار مينيموم را در فاصله اي كه كار جدا نمودن دو يون با بار مخالف چهار برابر بزرگتر از ميانگين انرژي جنبشي در هر درجه آزادي است را نشان ميدهد.
براي يون هاي بزرگ كه خيلي زياد نميتوانند به هم نزديك شوند، فرض ميشود كه معادله حدي دباي – هوكل براي آن ها رضايت بخش ميباشد. اما يون هاي كوچك قادرند خيلي به يكديگر نزديك شده و تشكيل زوج يون دهند.
زوج يون تجمع يافته بعنوان مولكول خنثي با ضريب فعاليت واحد، در تعادل با يون هاي آزاد شركت ميكند.
بر طبق آن چه تا به حال گفته شد از ديدگاه الكترواستاتيكي، رفتار غير ايده آل محلول هاي الكتروليت ممكن است قسمتي بر اثر عوامل فيزيكي و قسمتي بر اثر عوامل شيميايي باشد. در نظريه دباي – هوكل كه تفكيك يوني الكتروليت ها را در محلول كامل مي انگارد، انحراف از حالت ايده آل را به نيروهاي فيزيكي دوربرد نسبت ميدهد كه برحسب ضريب فعاليت مورد ارزيابي قرار ميگيرد و زوج شدن يون ها يا تجمع يوني در محلول بر طبق نظريه بجروم، از عوامل شيميايي ميباشد.

نظرات این مطلب

تعداد صفحات : 153

درباره ما
موضوعات
آمار سایت
  • کل مطالب : 1532
  • کل نظرات : 0
  • افراد آنلاین : 4
  • تعداد اعضا : 3
  • بازدید امروز : 117
  • بازدید کننده امروز : 1
  • باردید دیروز : 290
  • بازدید کننده دیروز : 0
  • گوگل امروز : 1
  • گوگل دیروز : 1
  • بازدید هفته : 118
  • بازدید ماه : 4360
  • بازدید سال : 17981
  • بازدید کلی : 1172841
  • <
    آرشیو
    اطلاعات کاربری
    نام کاربری :
    رمز عبور :
  • فراموشی رمز عبور؟
  • خبر نامه


    معرفی وبلاگ به یک دوست


    ایمیل شما :

    ایمیل دوست شما :



    کدهای اختصاصی