loading...

بهترين و سريعترين مرجع دانلود كارآموزي و پروژه و پايان نامه

دانلود پايان نامه و پروژه و كارآموزي در تمامي رشته هاي دانشگاهي

بازدید : 484
11 زمان : 1399:2

تعداد صفحات:62
نوع فايل:word
فهرست مطالب:
فصل اول : اساس كار موتورهاي القايي
مقدمه
كليد واژه
اصل ساخت اوليه و كاربري
استاتور
رتور
سرعت موتور القايي
انواع موتور هاي القايي
موتورهاي القايي تك فاز
موتورهاي القايي تك فاز
موتور قفس سنجابي
طبقه بندي موتورهاي القايي قفس سنجابي
موتورهاي كلاس A
موتورهاي كلاس B
موتورهاي كلاس C
موتورهاي كلاس D
موتور با روتور سيم پيچي شده
فصل دوم : كنترل سرعت
تغيير قطب ها
كنترل ولتاژ
كنترل فركانس
كنترل مقاومت روتور
فصل سوم : شبيه سازي كنترل سرعت موتورهاي القايي سه فاز آسنكرون
شبيه سازي كنترل سرعت موتورهاي القايي سه فاز آسنكرون
مقدمه اي بر سيمولينك
آشنايي با نحوه عملكرد بلوك ها
بلوك ماشين آسنكرون
بلوك Scope
بلوك Demux
بلوك اندازه گيري شدت جريان
بلوك اندازه گيري ولتاژ (اندازه گيري ولتاژ در يك مدار)
بلوك Constant
بلوك Gain
بلوك RLC load
بلوك power gui
بلوك to workspace
بلوك GTO
بلوك ديود
مدار شبيه سازي شده كنترل سرعت موتور القايي حلقه باز، به وسيله كنترل مقاومت روتور
ضمائم
اتو ترانسفورماتورها
مبدل هاي نيمه هادي
فهرست منابع

فهرست اشكال:
استاتور موتور القايي
روتور موتور القايي
مدار موتور القايي با سيستم استارت و بدون سيستم استارت
مشخصه هاي گشتاور سرعت موتورهاي كلاس A وB و C و D
مدار موتور القايي سه فاز روتور سيم پيچي شده
مشخصه گشتاور سرعت تحت ولتاژ هاي گوناگون
نحوه اعمال ولتاژ به استاتور
مدار كنترل حلقه باز جهت كنترل سرعت موتور القايي
ولتاژ مورد نياز در قبال تغييرات فركانس جهت تامين چگالي شار ثابت در شكاف هوايي
ولتاژ مورد نياز در قبال تغببرات فركانس جهت تامين چگالي شار ثابت در شكاف هوايي
جعبه محاوره اي ماشين آسنكرون
جعبه محاوره اي اندازه گيري جريان
جعبه محاوره اي اندازه گيري ولتاژ
جعبه محاوره اي GTO
مدار شبيه سازي شده براي تغيير مقاومت روتور
منحني هاي جريان روتور و استاتور، سرعت و گشتاور موتور براي مقاومت
اتو ترانسفورماتور تك فاز
تريستور GTO
GTO موازي شده با ديود و مدار حفاظتي

مقدمه:
موتورهاي القايي AC عمومي ترين موتورهايي هستند كه در سامانه هاي كنترل حركت صنعتي و همچنين خانگي استفاده ميشوند. طراحي ساده و مستحكم، قيمت ارزان، هزينه نگهداري پايين و اتصال آسان و كامل به يك منبع نيروي AC، امتيازات اصلي موتورهاي القايي AC هستند. انواع متنوعي از موتورهاي القايي AC در بازار موجود است. موتورهاي مختلف براي كارهاي مختلفي مناسب اند. با اين كه طراحي موتورهاي القايي AC آسان تر از موتورهاي DC است، ولي كنترل سرعت و گشتاور در انواع مختلف موتورهاي القايي AC نيازمند دركي عميق تر از طراحي و مشخصات اين نوع موتورهاست. اين نكته در اساس انواع مختلف، مشخصات آن ها، انتخاب شرايط براي كاربري هاي مختلف و روشهاي كنترل مركزي موتورهاي القايي AC را مورد بحث قرار ميدهد.

بازدید : 457
11 زمان : 1399:2

تعداد صفحات:75
نوع فايل:word
فهرست مطالب:
چكيده
كلمات كليدي
فصل اول : كليات
مقدمه
عوامل موثر بر كيفيت انتقال انرژي حاصله از آتشكاري
پارامترهاي موثر در كيفيت انتقال انرژي
امپدانس سنگ و ماده منفجره
ضريب امپدانس و ضريب جفت شدگي
تعريف متغير هاي تحقيق
چقرمگي شكست
مكانيك شكست
مقاومت و مكانيك سنگ ها
خواص مكانيكي سنگ ها
مغزه گيري و آماده سازي نمونه
ويژگي هاي مقاومت
شكست
مقاومت پسماند
تعيين مقاومت فشاري يك محوره
عوامل موثر بر مقاومت فشاري
آناليز فرآيند شكست سنگ
آتشكاري سنگ، داراي دو اثر ميباشد
فشار ديناميكي
فشار استاتيكي
مكانيزم آتشكاري متوسط نامحدود
زون شكست (زون فشرده شده)
يك روش محاسبه زون شكست
زون شكست (زون گسيختگي)
زون ارتعاش الاستيك
فصل دوم : ادبيات تحقيق
عمليات در معدن
مشخصات پارامترهاي شكست سنگ
شكست سنگ بعد از انفجار در معدن روباز
روش هاي آزمايشگاهي تعيين چقرمگي شكست سنگ در حالت كشش و برش
نمونه هاي (SR)
نمونه هاي (CB)
نمونه هاي (CCNBD)
نمونه هاي (SNSCB)
روش (PTS)
تحقيقات انجام شده
فصل سوم : روشهاي تحقيقات
روشهاي تحقيقاتي براي ارتعاشات ناشي از انفجار
شاخصهاي چگالي ارتعاش
رابطه تجربي ميرايي
تعيين چقرمگي شكست يك نوع سنگ با استفاده از يك قطعه آزمايشگاهي اصلاح شده
معرفي روش تست جديد
اندازه گيري چقرمگي شكست سنگ و بررسي خصوصيات شكست آن تحت شرايط بارگذاري مركب
تحليل اجزاء محدود نمونه CNSR جهت تعيين چقرمگي شكست مواد سنگي
فصل چهارم : يافته ها و نتايج
مكانيزم شكست سنگ
چقرمگي شكست
حالتهاي مختلف گسترش ترك
فشار چال، فشار انفجار و نواحي اطراف چال انفجار
معيارهاي تجربي پيشبيني شعاع هاي آسيب اطراف چال انفجار
براساس يك معيار سرانگشتي
برآورد مناطق پودر شده و ترك هاي شعاعي اطراف چال انفجاري
عوامل اصلي ميرايي امواج لرزهاي
آزمايشهاي ميداني
تعيين ماكزيمم مقدار خرج در هر تاخير
نمودارهاي عملي آتش باري
تداخل طول موج
تحليل عددي مكانيزم شكست پايه هاي سنگي در معادن عميق
تشريح تستهاي آزمايشگاهي
خصوصيات مصالح
مدل المان محدود
فصل پنجم : نتيجه گيري
نتيجه
تاثير زواياي بارگذاري
منابع

فهرست اشكال:
مقايسه دو رفتار شكننده و شكل پذير سنگ در اثر بار گذاري
تاثير اثر انتهايي نمونه بر روي شكست سنگ
آزمايش مقاومت فشاري يك محوره سنگ با توجه به نسبت ارتفاع به قطر
شكل شماتيكي دياگرام تاثيرات آسيبي آتشكاري
هندسه و نحوه بارگذاري نمونه sr Ouchterlony , 1988)
هندسه و نحوه بارگذاري نمونه CB ouchterlony , 1988)
هندسه، نحوه بارگذاري و مراحل ايجاد شكاف در نمونه (khan and Al –shayea ,2000) SNSCB
هندسه نمونه، نحوه بارگذاري و نماي شماتيك از نوك ترك قبل و بعد از تغيير شكل براي PTS –test (Backers et al ,2002(
صورت گرافيكي نقاط اندازه گيري و منحني رگرسيون
قطعه SCB (ترك زاويه دار – تكيه گاه ها متقارن)
قطعه ASCB (ترك مستقيم – تكيخ گاه ها نامتقارن)
سه مود اصلي انتشار ترك
مقطع چال انفجار و مناطق پنج گانه اطراف آن براساس پيشنهاد ايورسن و هماران
تغييرات تنش فشاري به كششي در اثر بازتاب از سطح آزاد در فاصله 20 متري از مركز انفجار
فركانس ارتعاش از وقايع ثبت شده
نمودار تخمين PPV براساس Q,R
نمودار برآورد ماكزيمم خرج ويژه برپايه PPV , R
هندسه مدل ساخته شده و استفاده شده در تحليل عددي
منحني تيپ بار جابجايي براي يك پايه
منحني رفتار پايه در شرايط توده سنگ با صلبيت پايين
منحني رفتار پايه در شرايط توده سنگ احاطه كننده با صلبيت بالا
نحوه انجام تست با استفاده از روش ASCB
هندسه نمونه آزمايش اصلاح شده Arcan
نمونه و دستگاه اصلاح شده Arcan
طرح يك مدل مش بندي شده كامل از دستگاه و نمونه اصلاح شده Arcan الف- قبل از بارگذاري ب- بعد از بارگذاري
المان هاي سينگولار اطراف راس ترك
مقايسه نتايج چقرمگي شكست حاصل از تست آزمايشگاهي و معيار MTS در مودهاي مختلف
تاثير زاويه بارگذاري بر مقادير نرخ انرژي كرنشي آزاد شده كل (GT)
تاثير زواياي بارگذاري بر نرخ انرژي آزاد شده كل، نرخ انرژي آزاد شده مد كششي و مد برشي و انرژي محاسبه شده توسط –J انتگرال در يك نمونه سنگ آهك
تاثير زواياي بارگذاري بر مقادير فاكتور شدت تنش براي يك نمونه سنگ آهك

فهرست جداول:
مغزه گيري و آماده سازي نمونه
پارامترهاي پايه مربوط به ارتعاشات ناشي از آتش باري و نتايج آزمايش هاي ميداني
روابط گوناگون برآورد منطقه پودر شده و ترك هاي شعاعي اطراف چال انفجار
اجازه ارتعاش ناشي از انفجار بر اساس استاندارد چين
نتايج موفقيت كاهش ارتعاشات و ميزان كاهش در ارتعاشات
اطلاعات استفاده شده در تحليل عددي
مشخصات مكانيكي سنگ هاي مورد استفاده در تحليل هاي المان محدود
مقايسه بين روشهاي مختلف ارائه شده براي اندازه گيري چقرمگي شكست سنگ

چكيده:
عبور امواج حاصل از انفجار باعث ايجاد تنشهاي كششي و فشاري در سنگ شده و توده سنگ را از لحاظ رفتار مكانيكي و ديناميكي تحريك مي نمايد. در بررسي كارايي مواد منفجره و بطور كلي ارزيابي كيفيت انفجار، داشتن اطلاع دقيق از رفتار سنگ تحت تنش هاي ناشي از انفجار و كيفيت انتقال و توزيع انرژي حاصله از آتشكاري نقش بسزايي دارند.
پديده رشد ترك در مواد سنگي مساله پيچيده‌اي است و اغلب نيازمند تكنيكهاي پيشرفته‌اي جهت پيشبيني هندسه شكست ميباشد. فرآيند شكست با جوانه‌زني ترك شروع ميشود كه وابسته به چقرمگي شكست است و بنابراين دقت هرگونه مدلسازي و نتايج آن به مقدار چقرمگي شكست سنگ بستگي دارد. از اين رو تعيين مقدار چقرمگي شكست اهميت ويژه‌اي دارد. اولين تلاشها توسط اشميت به منظور تعيين مقدار چقرمگي شكست سنگها بر مبناي روش تست استانداردي صورت پذيرفت كه براي اندازه‌گيري چقرمگي شكست كرنش صفحه‌اي مواد فلزي پيشنهاد شده بود. به دنبال آن كارهاي آزمايشگاهي فراواني جهت تعيين چقرمگي شكست سنگهاي مختلف با استفاده از نمونه‌هايي متفاوت صورت گرفت. صحت نتايج روشهاي تست تدوين‌شده نيازمند نمونه‌هايي با ابعاد هندسي بزرگ و هزينه‌هاي گران ماشين‌كاري بود كه در عمل تهيه آن ها از موادسنگي گاهي غيرممكن و يا غيرعملي بود تا اينكه نمونه‌هاي Core معرفي شدند كه نسبت به ساير نمونه‌ها مزاياي متعددي داشتند. مكانيك شكست سنگ بطور گسترده اي در فرآيند آتشباري سنگ ها، شكست هيدروليكي، تحليل شيب هاي سنگي، ژئوفيزيك، مكانيك زلزله، استخراج انرژي ژئوترمال زمين، حفاري هاي زيرزميني، حفاري چاه هاي نفت و در بسياري از مسائل كاربرد فراواني دارد. هنگاميكه يك سنگ ترك يا شكست ذاتي دارد، رفتار مكانيكي پيرامون انتهاي ترك، فاكتور مهمي است كه بايد در طراحي و پايداري فرآيندهاي ذكر شده مورد توجه قرار گيرد. اين مطالعه، كاربرد مكانيك شكست را براي مشخص كردن خصوصيات شكست بررسي مي كند. هدف اصلي اين تحقيق بررسي مكانيزم شكست سنگ در اثر انفجار – بخش عمده شكستگي سنگ و ايجاد درز و ترك چقرمگي و مقاومت سنگ و همچنين اهداف ديگر اين تحقيق تحليل عددي و ميداني انتشار امواج و ترك هاي حاصل از انفجار پيش شكافي در توده سنگ، تحليل عددي مكانيزم شكست پايه هاي سنگي در معادن عميق، تعيين چقرمگي شكست يك نوع سنگ با استفاده از يك قطعه آزمايشگاهي اصلاح شده، اندازه گيري چقرمگي شكست سنگ و بررسي خصوصيات شكست آن تحت شرايط بارگذاري مركب با استفاده از روش هاي عددي و آزمايشگاهي، تحليل اجزاء محدود نمونه CNSR جهت تعيين چقرمگي شكست مواد سنگي

مقدمه:
مكانيك شكست به بررسي رشد ترك و مكانيزم شكست ميپردازد كه مبناي آن اصلاحات و تعميمات ايروين بر روي تئوري شكست گريفيس بوده است. در واقع مكانيزم شكست شرحي كمي بر فرآيند شكست يك قطعه بكر توسط رشد ترك ميباشد. حوزه مكانيك شكست در برگيرنده روابط ميان ماكزيمم تنش مجاز، اندازه و محل ترك، سرعت رشد ترك ناشي از اثرات محيطي وامكان جلوگيري از حركت ترك ها ميباشد.
تركها و ناپيوستگي ها از ويژگيهاي متداول توده‌هاي سنگي ميباشند و هر فعاليت تحريك كننده در توده‌هاي سنگي (مانند زلزله، انفجارسنگ در معادن و تخريب شيب هاي سنگي) ممكن است سبب جا به جايي آن ها در امتداد شكستهاي موجود و يا پيدايش شكست‌هاي جديد گردد.
چقرمگي شكست سنگ پارامتر كليدي مكانيك شكست سنگ براي پيش بيني شروع و گسترش ترك ها در سنگ است كه نقش مهمي را در طراحي ابزار برش سنگ، انفجار سنگ، تحليل پايداري شيب هاي سنگي، طراحي شكافت هيدروليكي مخازن هيدروكربوري، تحليل پايداري چاه هاي نفت و گاز و بسياري ديگر از كاربردهاي مهندسي سنگ ايفا ميكند. چقرمگي شكست سنگ به ميزان مقاومت آن در مقابل شروع و رشد ترك اطلاق مي شود و يكي از خواص ذاتي سنگ است كه با روشهاي آزمايشگاهي تعيين ميشود. لذا با توجه به مطالب فوق اندازه گيري دقيق چقرمگي شكست سنگ اهميت ويژه اي مييابد.

بازدید : 474
11 زمان : 1399:2

تعداد صفحات:88
نوع فايل:word
فهرست مطالب:
چكيده
فصل اول
آشنايي با روشهاي استخراج و مراحل انتخاب يك روش مناسب جهت استخراج
انتخاب روش روباز يا زيرزميني با استفاده از نسبت باطله برداري مجاز
مراحل انتخاب روش استخراج
خصوصيات فيزيكي و زمين شناسي كانسار
شرايط ژئومكانيكي زمين
هزينه هاي عملياتي و سرمايه گذاري
نرخ توليد
دسترسي و هزينه كارگران ماهر
ميزان تاثير گذاري بر محيط زيست
تقسيم بندي روشهاي استخراج معادن روباز
روش استخراج تك پله اي
روش استخراج چند پله اي
روش استخراج سطح برداري
روش استخراج مسطحي
روش استخراج كنتوري
روش استخراج كواري
فصل دوم
روشهاي برش سنگ هاي ساختماني و نما جهت استخراج
روشهاي استخراج سنگ‌هاي ساختماني
استخراج سنگ توسط سيم برش الماسه
مكانيزم روش سيم برش الماسه
عوامل موثر در استخراج سنگ با سيم برش الماسه
كاربردهاي برشگر سيم الماسه
محاسن و اشكالات برشگرهاي سيم الماسه
استخراج سنگ توسط برشگرهاي زنجيري
شرح دستگاه برشگر زنجيري
كاربرد برشگرهاي زنجيري
محاسن و معايب برشگرهاي زنجيري
استخراج سنگ توسط برشگر شعله جت
شرح دستگاه برشگر شعله جت
كاربردهاي برشگر شعله جت
محاسن و معايب برشگرهاي شعله جت
استخراج سنگ توسط برشگر آب جت
استخراج به روش آتش باري كنترل شده
مكانيزم انفجار
انواع روشهاي آتشكاري كنترل شده
روش پيش‌ شكافي
روش بالشتكي
روش ملايم
استخراج سنگ به كمك حفاري خطي يا حفر چال‌هاي خالي
استخراج سنگ با استفاده از مواد مخصوص شيميايي به جاي مواد ناريه
استخراج سنگ به روش فنلاندي
استخراج سنگ با ماشين‌ هاواژ (شيارزن)
ماشين هاواژ با بازوي زنجيردار
ماشين‌ هاواژ با ديسك برنده
ماشين هاواژ با صفحه فرز
اهميت سالم درآوردن سنگ
جدا سازي بلوك
قواره كردن بلوك
قوراه كردن با نعل و پارس
قواره كردن با نعل و پارس مكانيكي
قواره كردن توسط بلوك كاتر
قواره كردن با فتيله كرتكس
قواره كردن با استفاده از تك لام
فناوري نقل و انتقال بلوك در معدن
كارخانجات سنگ بري
ماشين آلات برش سنگ هاي نرم
قسمت ساب و صيقل سنگ هاي نرم
ماشين آلات برش سنگ هاي سخت
پردازش سنگ
انواع محصولات سنگي نيمه تكميل شده
اسلب‌ها
اسلب‌هايي نامنظم
نوار سنگ‌ها
سنگ ابعادي
بلوك هاي توپر
باريكه‌ها (ليستل‌ها)
طرح كلي يك مركز پردازش
عمليات پردازش
چرخه توليد اسلب‌‌هاي بزرگ
چرخه توليد براي محصولات استاندارد
پردازش ويژه
ماشين‌آلات و تجهيزات
واحد قواره كرده و برش بلوك
سيستم تك تيغه‌اي
دستگاه غير متحرك سيم الماسه
اره گروه چند تيغه‌اي
بلوك برها
ماشين هاي برش و اصلاح
اره بازويي
اره پلي
اره هاي پيوسته چند ديسكي
ماشين‌هاي سرزني
پردازش سطح
سطح صفحه معدن
سطح با شكاف طبيعي
سطح تكميل شده با اره گروه
سطح تكميل شده با بلوك بر
سطح تكميل شده با سيم الماسه
سطح حاصل از پردازش ضربه‌اي (مكانيكي)
سطح حاصل از پردازش حرارتي
سطح تكميل شده خراشي
سطح پرداخت شده با مواد شيميايي
تكميل رزيني
گچ كاري
سطح تكميل شده عتيقه‌اي
خلاصه
منابع

فهرست اشكال:
استخراج سنگ به وسيله سيم الماسه
برش انجام شده توسط يك برشگر زنجيري
استفاده از برشگر شعله جت براي ايجاد يك برش عمودي اوليه در يك معدن گرانيت
استفاده از سيمان منبسط شونده براي قواره كردن بلوك گرانيت سياه
بالشتك هاي هيدروليك كه در برش عمودي اوليه قرار داده شده‌اند
هل دادن يك كناره توسط جك هاي هيدروليك
قواره كردن يك كرانه گرانيت با استفاده از نعل و پارس
جا به جايي يك كرانه بزرگ توسط يك بولدوزر
جابه ‌جايي بخشي از يك كرانه با بيل‌ مكانيكي
قواره كردن يك بلوك مرمريت با دستگاه تك تيغه‌اي
قواره كردن يك بلوك مرمريت با دستگاه غير متحرك سيم الماسه
برش يك بلوك مرمريت با يك اره گروه چند تيغه‌اي
ايجاد نوار سنگ‌ها از طريق ايجاد برش عمودي در قاعده توسط ديسك افقي
برش دهنده ديسكي بزرگ
برش تايل روي يك اره پلي

فهرست جداول:
مقادير ميانگين عملكرد سيم الماسه در معادن سنگ‌هاي مختلف

چكيده:
در اين پروژه ابتدا روشهاي استخراج روباز بطور كامل معرفي و مورد بحث قرار ميگيرد. سپس با بررسي كامل اين روشها مواردي در مورد بهينه سازي اين روشها در جهت توليد بيشتر و كاهش هزينه ها به اين روشها اضافه شده است.
بطور كلي معادن در زيرزمين و يا در سطح و نزديك سطح زمين قرار دارند. بنابراين روشهاي استخراج معادن را بر حسب موقعيت كانسار معدني نسبت به سطح زمين ميتوان به دو گروه تقسيم كرد:
1) آن گروه از كانسارهايي كه در مناطق كم عمق قرار گرفته اند و ضخامت موادي كه بر روي ماده معدني قرار دارد اعم از پوشان سنگ و سنگ باطله نسبتاً كم ميباشد. اين گروه از كانسارهاي معدني را ميتوان در صورت داشتن شرايط ديگر مثل حجم، عيار و …، با روشهاي استخراج معادن روباز استخراج كرد. همچنين در صورتي كه ضخامت باطله هاي روي ماده معدني نسبتاً زياد باشد (تا حدود 300 متر) نيز به دليل شرايطي مانند دسترسي به نيروي كار ماهر، زمان دسترسي به ماده معدني، هزينه توليد، ميزان توليد، نشست و مانند اين ها روشهاي استخراج معادن روباز بايد بطور جدي مورد ارزيابي و مقايسه قرار گيرند به عبارت ديگر روشهاي استخراج معادن روباز در اولويت خواهند بود چون عمليات باطله برداري و استخراج ماده معدني در فضاي باز صورت ميگيرد و محدوديتي از نظر استفاده از ماشين آلات عظيم الجثه با قدرت و ظرفيت زياد وجود ندارد. به همين دليل توليد و ايمني در روشهاي روباز بالا و هزينه پايين خواهد بود و چون هزينه استخراج پايين است امكان استخراج مواد معدني با عيارهاي پايين بالاخص در مورد ذخاير توده اي وجود دارد. بدين جهت روشهاي استخراج معادن روباز خصوصاً روش استخراج چند پله اي براي ذخاير توده اي كه در سطح يا نزديك سطح زمين قرار ندارند نيز به كار برده ميشود.
2) آن گروه از كانسارهايي كه در مناطق عميق قرار گرفته اند كه اين گونه كانسارها با روشهاي استخراج زيرزميني استخراج ميشوند. انتخاب يك روش به مقاومت سنگ، شكل، ضخامت، شيب و ابعاد كانسار بستگي دارد. به منظور انتخاب مناسب ترين روش استخراج براي هر كانسار ابتدا بايد از نظر تكنيكي، مناست ترين روش يا روشهاي اولويت بندي شوند و سپس از بعد اقتصادي مقايسه و نهايتاً مناسب ترين روش از نظر اجرايي (قابليت يا توان اجراي روش) براي كانسار پيشنهاد شود.

بازدید : 455
11 زمان : 1399:2

تعداد صفحات:69
نوع فايل:word
فهرست مطالب:
چكيده
بخش اول – آشنايي با تاسيسات الكتريكي
آشنايي با جريان سه فاز
روش هاي اندازه گيري توان
مزاياي سيستم سه فاز
عايق كابل ها
علايم اختصاري كابل ها
فيوز
فيوز فشار قوي
انتخاب نوع فيوز
تعيين افت ولتاژ مجاز و انتخاب سطح مقطع هادي
حداكثر افت ولتاژ
بخش دوم – وسايل كنترل ساده
كليدها
كليد اهرمي ساده
كليد غلطكي
كليد زبانه اي
راه اندازي موتورها با استفاده از كليد ستاره – مثلث
بخش سوم – كليدهاي مركب
كليدهاي مركب
تعريف رله
تعريف كنتاكتور
آشنايي با قطع كننده هاي ولتاژ (سكسيونرها) و كليدهاي قدرت (ديژنكتورها)
سكسيونر ساده
موارد استعمال سكسيونرها
سكسيونرهاي قابل قطع زيربار
كليد قدرت يا ديژنكتور
تايمر(كليد زماني)
بخش چهارم – كابل
معيارهاي انتخاب كابل
ظرفيت جريان دهي كابل ها
افت ولتاژ
تحمل جريان اتصال كوتاه توسط كابل
جريان هاي اتصال كوتاه غير متقارن
مقادير جريان نامي

فهرست جداول:
دماي محيط و زمين بر حسب درجه سانتيگراد
حداكثر دماي كار هادي براي كابل هاي مختلف
مقاومت مخصوص حرارتي خاك
ضرايب تصحيح درجه حرارت هاي مختلف
ضريب تصحيح براي دماهاي مختلف زمين
ضريب تصحيح براي مدارهايي با سه كابل تك رشته به صورت افقي يا مثلثي گروهي
ضريب تصحيح براي گروه كابل هاي چند رشته اي به صورت افقي
ضريب تصحيح براي عمق دفن كابل (تا مركز كابل يا مركز گروه مثلثي كابل)
ضريب تصحيح براي مقاومت مخصوص حرارتي خاك
ضريب تصحيح براي گروه كابل هاي تك رشته به صورت مثلثي و يا افقي در مجرا
ضريب تصحيح براي كابل هاي چند رشته در مجرا به صورت افقي
ضريب تصحيح براي عمق كابل (مراكز مجراها يا گروه مجراي مثلثي)
مشخصات الكتريكي كابل با عايق XLPE و ولتاژ 600/1000V
مشخصات الكتريكي كابل هاي XLPE و ولتاژ 19/33KV
حد دماي اتصال كوتاه
ثابت هاي محاسبات اتصال كوتاه
جريان اتصال كوتاه با عايق هاي مختلف
حداكثر جريان اتصال كوتاه نامتقارن مجاز به زمين

چكيده:
انرژي الكتريكي يكي از ارزان ترين انواع انرژي و در عين حال در دسترس ترين نوع انرژي محسوب مي شود. نياز به استفاده از انرژي الكتريكي بشر را وادار به ساخت دستگاه هايي براي انتقال و همچنين دريافت انرژي در سطوح مختلف انتقال، فوق توزيع و توزيع متناسب با آن نموده است. براي نصب وراه اندازي اين دستگاه ها افراد آموزش ديده اي تربيت مي كند كه به آن ها تاسيساتي مي گويند.

بازدید : 446
11 زمان : 1399:2

تعداد صفحات:39
نوع فايل:word
فهرست مطالب:
چكيده
مقدمه
فصل اول – كليات
جدول لرزه نگاري : جدول بزرگ ترين لرزه هاي ثبت شده از وقوع زلزله در جهان
مدل ساختماني كه در اثر زلزله، لرزش مييابد
طبقه نرم و آسيب پذير و راه اصلاح آن: مسئله ديوارهاي كمتر در طبفه همكف
فرو ريختن ساختمان مسكوني نورتريج ميدوز: زلزله نورتريج.
ديوارهاي با اسكلت چوبي: جزييات خاص مقاومت در برابر نيروهاي زلزله
مهـاربندي ساختمان هايي با اسكلت چوبي: مقاوم سازي اتصالات به فونداسيون بتني
بتن مقاوم دربرابر زلزله: سازه هاي انعطاف پذير جديد در مقابل سازه هاي غير انعطاف پذير قديمي و فرسوده
استهلاك كننده ها: قرار دادن ابزار مقاوم در برابر زلزله در سازه
ايزولاسيون زمين لرزه
عايق كردن سازه در مقابل شدت زلزله
تــالار شهــر سـان فـرانسيسكو: پروژه مقاوم سازي در برابر زلزله در مقياس عظيم
فصل دوم – تحقيقات مهندسي زلزله
تكان هاي شديد زمين
فيزيك تخريب زلزله و فشارهاي پوسته اي
سيستم هاي هشدار دهنده زلزله
مطالعات لرزش هاي ساختمان
نتيجه گيري
منابع و ماخذ
منابع لاتين

چكيده:
برپايي نمايشگاه عمومي با موضوع مهندسي زلزله در سان فرانسيسكو در مجلس يادبود صد ساله زلزله 18 آوريل 1906، با اين حال هدف خاصي از طريق اين برنامه دنبال مي شود كه بالا بردن سطح درك و آگاهي عموم مردم از مهندسي زلزله است.
سكوي لرزه نگاري، شبيه ساز پوياي زلزله است كه حركات ثبت شده از زلزله هاي قبلي و يا حركات زميني در زلزله هاي احتمالي در آينده را مجدداً نمايش مي دهد. سيستم لرزه نگاري قادر به باز توليد حداكثر شدت زلزله هاي ثبت شده تا تقريباً يك گرم مي باشد. سيستم دفاع در مقابل زلزله قادر به لرزاندن كل ساختمان (مدل) مثل يك زلزله واقعي مي باشد كه به شكل 3 بعدي انجام مي شود. در زمان وقوع زلزله، تكان ها و لرزش هاي زمين هم در جهت عمودي و هم در جهت هاي مختلف به شكل افقي صورت مي گيرد. اندازه و قدرت 2 عامل اصلي در اين سكوي لرزه نگاري هستند كه امكان آزمايش مدل هاي سازه اي واقعي و بزرگ تر را فراهم مي كنند. با اين حال، سكوي لرزه نگاري پيچيده بايد قادر به باز توليد دقيق حركات خاص زمين لرزه باشد. سيستم هاي فعال كنننده اي كه در زير سكوي لرزه نگاري قرار دارند، شبيه سازي سه بعدي، دقيق و قدرت مندي از زلزله ارائه مي دهند. اين فعال كننده ها با نيروي هيدروليكي كار مي كنند كه از طريق كامپيوتر كنترل مي شود و از طريق لوله هايي از يك منبع بزرگ وارد هر فعال كننده مي شود. مدل ساختمان كوچك روي سكوي لرزه نگاري، واكنش پوياي ساختمان را نشان مي دهد. حركات زمين در اثر زلزله فقط تا حدي عامل تعيين كننده شدت لرزيدن ساختمان است و نشان مي دهد كه تا چه مقدار حركت ساختمان (مدل) با حركت زمين هماهنگ و همسو مي شود، ميزان و سرعت لرزش زمين بسته به شدت زلزله متفاوت از هم مي باشد. اكثر تغيير شكلهاي پوسته زمين هنگام تخريب زلزله اتفاق مي افتد درك ديناميك هاي اساسي تخريب زلزله براي فهم فشار پوسته، از اهميت فوق العاده اي برخوردار است و لغزش ها در زلزله ها و فشار در پوسته زمين، از نظر فضايي ناهمگن (غيريكنواخت) اند و شايد هم فراكتال باشد. ما دو رويه متفاوت را براي فهميدن جزئيات ديناميك اين سيستم، دنبال كرده ايم.

مقدمه:
بر پايي نمايشگاه عمومي با موضوع مهندسي زلزله در سان فرانسيسكو در مجلس يادبود صد ساله زلزله 18 آوريل 1906، به نظر آنقدر مناسب مي باشد كه نياز به توجيه برگزاري آن نيست. با اين حال هدف خاصي از طريق اين برنامه دنبال مي شود كه بالا بردن سطح درك و آگاهي عموم مردم از مهندسي زلزله است. گرچه ويژگي هاي مهندسي زلزله در اطراف آن ها بسيار است اما ممكن است شناخت خوبي از آن نداشته باشند.
مهندسي زلزله كاربرد مهندسي در حل مسئله زلزله است كه زير شاخه مهندسي عمران محسوب مي شود و شامل انواع مهندسي لازم براي طراحي و ساخت بناهاي فيزيكي در ساختمان هايي است كه هر روزه در آن زندگي و كار مي كنيم:
ساختمان ها، پلها، فرودگاه ها، بزرگراه ها، سيستم هاي منبع آب و غيره. اين نمايشگاه، نمونه هايي را نشان مي دهد كه كار مهندسان زلزله را توضيح داده و به بعضي از مسائل، مشكلات و راه حل هاي زلزله اشاره مي كند.
مهندسي سازه، بخش اصلي در مهندسي زلزله است. مهندسان سازه، سازه اي را طراحي كرده و مي سازند كه در مقابل جاذبه زمين در مناطقي كه زلزله خيز هستند، مقاومت كند و از اين رو با مسائل چالش برانگيزي از زلزله سر و كار دارند. در كاليفرنيا، عنوان مهندسي سازه، واژه اي خاص است كه فقط مهندسان عمراني كه صلاحيت و توانايي هاي ضروري را دارند به اين نام خوانده مي شوند. مهندسان ژئوتكنيك افراد متخصص در جنبه هاي مهندسي با تمركز بيشتر روي جاذبه زمين و نيروهاي زمين لرزه و نحوه حفاظت از ساختمان ها و فونداسيون آن ها در مقابل اين نيروها مي باشند.
دانشجوياني كه مايل به تحصيل در رشته مهندسي سازه يا ژئوتكنيك هستند، بايد مجموعه دروس رياضيات و علوم را در دبيرستان بگذرانند. در دانشكده، دانشجويان بايد در سال هاي اول و دوم در مهندسي عمران تخصص پيدا كنند. امروزه اين دانشكده، دانشكده مهندسي عمران و محيط زيست ناميده مي شود. تحصيل در مقطع فوق ليسانس پس از اخذ مدرك ليسانس در اين رشته، توصيه مي شود. وب سايت ما داراي اطلاعات و لينك هايي در ارتباط با دانشگاه هايي است كه برنامه هايي براي مهندسي زلزله و مهندسي عمران دارند.
زلزله شناسي درس اصلي است كه مهندسان زلزله در طراحي ساختمان هاي ضد زلزله به آن تكيه مي كنند. زلزله شناسي با دلايل وقوع زلزله، از هم گسيختگي كوه ها در اطراف گسل ها و نحوه حركت زمين و لرزيدن ساختمان ها سر و كار دارد. دانشجوياني كه مايلند زلزله شناس شوند بايد مجموعه كاملي از درون رياضي و علوم را در دوران دبيرستان بگذرانند تا پس از آن در دانشكده زمين شناسي يا علوم زميني مشغول به تحصيل شوند. ادامه تحصيل در مقاطع فوق ليسانس و دكترا پس از اخذ مدرك ليسانس توصيه مي شود.

بازدید : 470
11 زمان : 1399:2

تعداد صفحات:67
نوع فايل:word
فهرست مطالب:
فصل اول : انواع منابع تغذيه
منبع تغذيه خطي
مزاياي منابع تغذيه خطي
معايب منبع تغذيه خطي
بزرگ بودن ترانس كاهنده ورودي
منبع تغذيه غير خطي (سوئيچينگ)
مزاياي منبع تغذيه سوئيچينگ
معايب منابع تغذيه سوئيچينگ
فصل دوم : يكسوساز و فيلتر ورودي
يكسوساز ورودي
مشكلات واحد يكسوساز ورودي و روشهاي رفع آنها
استفاده از NTC
استفاده از مقاومت و رله
استفاده از مقاومت و ترياك
روش تريستور نوري
فصل سوم : مبدلهاي قدرت سوئيچنيگ
مبدل فلاي بك غير ايزوله
مبدل فوروارد غير ايزوله
فصل چهارم : ادوات قدرت سوئيچينگ
ديودهاي قدرت
ساختمان ديودهاي قدرت
انواع ديود قدرت
ديودهاي با بازيابي استاندارد يا همه منظوره
ديودهاي بازيابي سريع و فوق سريع
ديودهاي شاتكي
ترانزيستور دو قطبي قدرت سوئيچينگ
ترانزيستور ماس‌ فت قدرت سوئيچينگ
فصل پنجم : مدارهاي راه انداز
مدارهاي راه‌انداز بيس
راه انداز شامل ديود و خازن
مدار راه انداز بهينه
راه اندازهاي بيس تناسبي
تكنولوژي ساخت ترانزيستورهاي ماس‌ فت
فصل ششم : واحد كنترل PWM
نحوه كنترل PWM
معرفي تعدادي از مدارهاي مجتمع كنترل كننده PWM
مدار مجتمع مد جرياني خانواده 5/4/3/842 (3)
مدار مجتمع كنترل كننده مُد جرياني از نوع سي ماس
مدر مجتمع مد ولتاژي P/FP 16666 HA
مدار مجتمع مد ولتاژي
مدار مجتمع مد جرياني
مدار مجتمع مد جرياني
فصل هفتم : سوئيچينگ ولتاژ صفر و جريان صفر
سوئيچينگ ولتاژ صفر و جريان صفر
مبدل فلاي بك ولتاژ صفر ساده
مبدلهاي سوئيچينگ نرم ولتاژ صفر
مبدل تشديدي موازي
مبدل تشديدي سري
مبدل تشديدي سري – موازي
پل تشديدي با فاز انتقال يافته
سوئيچينگ نرم جريان صفر
فصل هشتم : تجزيه و تحليل چند منبع تغذيه سوئيچينگ
مدار مجتمع
مدار مجتمع
مدار مجتمع P/FP 16666HA
مدار مجتمع
مدار مجتمع
مدار مجتمع TOPxxx
فصل نهم : برخي ملاحظات جانمايي
مقدمه
سلف
فيدبك
خازن هاي فيلتر
مسير زمين
چند نمونه طرح جانمايي
خلاصه
فهرست قوانين طرح جانمايي

چكيده:
كليه مدارات الكترونيكي نياز به منبع تغذيه دارند. براي مدارات با كاربرد كم قدرت از باطري يا سلول هاي خورشيدي استفاده ميشود. منبع تغذيه بعنوان منبع انرژي دهنده به مدار مورد استفاده قرار ميگيرد. حدود 20 سال است كه سيستم هايي پر قدرت جاي خود راحتي در مصارف خانگي هم باز كرده اند و اين به دليل معرفي سيستم هاي جديد براي تغذيه مدارات قدرت است.
اين منابع تغذيه كاملاً خطي عمل مي نمايند. اين نوع منابع را منابع تغذيه سوئيچينگ مي نامند. اين اسم از نوع عملكرد اين سيستم ها گرفته شده است. به اين منابع تغذيه اختصاراً SMPS نيز ميگويند. اين حروف برگرفته از نام لاتين Switched Mode Power Supplies است.
راندمان SMPS به صورت نوعي بين 80% الي 90% است كه 30% تا 40% آن ها در نواحي خطي كار ميكنند. خنك كننده هاي بزرگ كه منابع تغذيه گلوله قديمي از آن ها استفاده ميكردند، در SMPS ها ديگر به چشم نمي خورند و اين باعث شده كه از اين منابع تغذيه بتوان در توان هاي خيلي بالا نيز استفاده كرد.
در فركانس هاي بالاي كليدزني از يك ترانزيستور جهت كنترل سطح ولتاژ DC استفاده ميشود. با بالا رفتن فركانس ترانزيستور، ديگر خطي عمل نميكند و نويز مخابراتي شديدي را با توان بالا توليد مينمايد. به همين سبب در فركانس كليدزني بالا از المان كم مصرف Power MOSFET استفاده ميشود. اما با بالا رفتن قدرت، تلفات آن نيز زياد ميشود. المان جديدي به بازار آمده كه تمامي مزاياي دو قطعه فوق را در خود جمع آوري نموده است و ديگر معايب BJT و Power MOSFET را ندارد. اين قطعه جديد IGBT نام دارد. در طي سال هاي اخير به دليل ارزاني و مزاياي اين قطعه از IGBT استفاده زيادي شده است.
امروزه مداراتي كه طراحي ميشوند، در رنج فركانسي MHZ و قدرت هاي در حد MVA و با قيمت خيلي كمتر از انواع قديمي خود ميباشند.
فروشنده هاي اروپايي در سال 1990 ميلادي تا حد 2 ميليارد دلار از فروش اين SMPS ها درآمد خالص كسب نمودند. 80% از SMPS هاي فروخته شده در اروپا طراحي شدند و توسط كارخانه هاي اروپايي ساخت آن ها صورت پذيرفت. درآمد فوق العاده بالاي فروش اين SMPS ها در سال 1990 باعث گرديد كه شاخه جديدي در مهندسي برق ايجاد شود.
اين رشته مهندسي طراحي منابع تغذيه سوئيچينگ نام گرفت.
يك مهندس طراح منابع تغذيه سوئيچينگ بايستي كه در كليه شاخه‌هاي زير تجربه و مهارت كافي كسب كند و هميشه اطلاعات بروز شده در موارد زير داشته باشند:
1) طراحي مدارات سوئيچينگ الكترونيك قدرت.
2) طراحي قطعات مختلف الكترونيك قدرت.
3) فهم عميقي از نظريه هاي كنترلي و كاربرد آن ها در SMPS ها داشته باشد.
4) اصول طراحي را با در نظر گرفتن سازگاري ميدان هاي الكترومغناطيسي منابع تغذيه سوئيچينگ با محيط انجام دهد.
5) درك صحيح از دفع حرارت دروني (انتقال حرارت به محيط) و طراحي مدارات خنك كننده موثر با راندمان زياد.

مقدمه:
منابع تغذيه سوئيچينگ امروزه و به خصوص از سال 1990 به اين طرف جاي خود را در تمامي دستگاه هاي الكتريكي و در صنايع الكترونيك، مخابرات، كنترل، قدرت، ماهواره ها، كشتي ها، كامپيوترها، موبايل، تلفن و … به دليل ارزاني قيمت و كم حجم بودن و راندمان بالا باز كرده اند. به همين دليل اكنون همه كشورهاي جهان حتي در جهان سوم به طراحي و ساخت اين نوع از منابع تغذيه پركاربرد مي پردازند. اما با اين وجود متاسفانه هنوز اين منبع تغذيه در ايران ناشناخته مانده و همه روزه مقدار زيادي از بيت‌المال المسلمين در راه ساخت منابع تغذيه غير ايده‌آل و يا خريد اين گونه منابع تغذيه سوئيچينگ از كشور خارج ميشود.

بازدید : 523
11 زمان : 1399:2

تعداد صفحات:70
نوع فايل:word
فهرست مطالب:
فصل اول – پيشگفتار
مقدمه
محدوديتهاي انتقال توان در سيستم هاي قدرت
عبور توان در مسيرهاي ناخواسته
ظرفيت توان خطوط انتقال
مشخصه باپذيري خطوط انتقال
محدوديت حرارتي
محدوديت افت ولتاژ
محدوديت پايداري
راه حل‌ها
كاهش امپدانس خط با نصب خازن سري
بهبود پرفيل ولتاژ در وسط خط
كنترل توان با تغيير زاويه قدرت
راه حل‌هاي كلاسيك
بانكهاي خازني سري با كليدهاي مكانيكي
بانكهاي خازني وراكتوري موازي قابل كنترل با كليدهاي مكانيكي
جابجاگر فاز
فصل دوم – آشنايي اجمالي با ادوات FACTS
مقدمه
انواع اصلي كنترل كننده هاي FACTS
كنترل كننده‌هاي سري
جبران ساز سنكرون استاتيكي به صورت سري (SSSC)
كنترل كننده‌هاي انتقال توان ميان خط (IPFC)
خازن سري با كنترل تريستوري (TCSC)
خازن سري قابل كليدزني با تريستور (TSSSC)
خازن سري قابل كليد زني با تريستور (TSSC)
راكتور سري قابل كليد زني با تريستور (TSSR)
راكتور با كنترل تريستوري (TCSR)
كنترل كننده‌هاي موازي
جبران كننده سنكرون استاتيكي (STATCOM)
مولد سنكرون استاتيكي (SSG)
جبران ساز توان راكتيو استاتيكي (SVC)
راكتور قابل كنترل با تريستور (TCR)
راكتور قابل كليدزني با تريستور (TSR)
خازن قابل كليدزني با تريستور (TSC)
مولد يا جذب كننده توان راكتيو (SVG)
سيستم توان راكتيو استاتيكي (SVS)
ترمز مقاومتي با كنترل تريستوري (TCBR)
كنترل كننده تركيبي سري – موازي
كنترل كننده يكپارچه انتقال توان (UPFC)
محدود كننده ولتاژ با كنترل تريستوري (TCVL)
تنظيم كننده ولتاژ با كنترل تريتسوري (TCVR)
جبران‌سازهاي استاتيكي توان راكتيو SVC و STATCOM
مقايسه ميان SVC و STATCOM
خازن سري كنترل شده با تريستور GTO (GCSC)
خازن سري سوئيچ شده با تريستور (TSSC)
خازن سري كنترل شده با تريستور (TCSC)
فصل سوم – بررسي انواع كاربردي ادوات FACTS
مقدمه
منبع ولتاژ سنكرون بر پايه سوئيچينگ مبدل
كنترل كننده توان عبوري بين خطي (IPFC)
جبرانگر سنكرون استاتيكي سري (SSSC)
جبرانگر سنكرون استاتيكي (STATCOM)
آشنايي با UPFC
تاثير UPFC بر منحني بارپذيري
معرفي UPFC
آشنايي با SMES
نحوه كار سيستم SMES
مقايسه SMES با ديگر ذخيره كننده هاي انرژي
آشنايي با UPQC
ساختار و وظايف UPQC
آشنايي با HVDCLIGHT
مزاياي سيستم HVDCLIGHT
كاربرد سيستم HVDCLIGHT
عيب سيستم HVDCLIGHT
بررسي اضافه ولتاژهاي داخلي در خطوط انتقال قدرت HVDC
مقايسه SCC و TCR از ديدگاه هارمونيك هاي تزريقي به شبكه توزيع
SVC
مبدلهاي منبع ولتاژ VSC
فصل چهارم – نتيجه گيري
منابع

فهرست اشكال:
سيستم مورد مطالعه براي مساله توان در حلقه
مدل ساده شده شبكه براي مطالعه مشخصه بارپذيري
فاصله مجاز خط انتقال از زمين و تاثير دماي هادي در انبساط طول
تغييرات ولتاژ وسط خط انتقال سيستم براي توان هاي انتقالي متفاوت
مشخصه توان – زاويه ي سيستم مورد مطالعه و مساله پايداري
مشخصه بارپذيري خطوط انتقال
خازن سري كنترل شده با كليد هاي مكانيكي
بانكهاي خازني و راكتوري با كليدهاي مكانيكي
ترانسفورماتورهاي تغيير دهنده فاز يا تپ چنجرهاي مكانيكي
مبدل 6 پالسه ابتداي
موج هاي ولتاژ خروجي
ساختار كلي مبدل چند پالسه
شكل موج هاي خروجي با 48 پالس (n=8)
يك IPFC ابتدايي كه از دو SSSC متصل به هم تشكيل شده است
دياگرام فازوري و منحني بر حسب P
IPFC چندين خط شامل n عدد SSSC و يك لينك DC مشترك
شماي كليIPFC كه از n عددSSSC و يك STATCOM تشكيل شده است
جبران رايج خط توسط خازن سري عادي
منبع ولتاژ سنكرون به كار رفته بعنوان جبرانگر سنكرون استاتيكي سري
نمودار P برحسب δ به صورت تابعي از ولتاژ جبران سازي Vq
مشخصه V-I متعلق به STATCOM
افزايش توان قابل انتقال با به كارگيري STATCOM در نقطه مياني خط
بهبود پايداري گذرا با استفاده از STATCOM در نقطه مياني
استفاده از SVC با همان ظرفيت در نقطه مياني

مقدمه:
اين نوشتار عهده دار معرفي ادوات جديد سيستمهاي مدرن انتقال انرژي ميباشد كه تحول زيادي را در بهره‌برداري و كنترل سيستم هاي قدرت ايجاد خواهد كرد.
با رشد روز افزون مصرف، سيستم هاي انتقال انرژي با بحران محدوديت انتقال توان مواجه هستند. اين محدوديت ها عملاً به خاطر حفظ پايداري و تامين سطح مجاز ولتاژ به وجود مي‌آيند. بنابراين ظرفيت بهره‌برداري عملي خطوط انتقال بسيار كمتر از ظرفيت واقعي خطوط كه همان حد حرارتي آن هاست، ميباشد. اين امر موجب عدم بهره برداري بهينه از سيستم‌هاي انتقال انرژي خواهد شد. يكي از راه هاي افزايش ظرفيت انتقال توان‌،‌ احداث خطوط جديد است كه اين امر هم چندان ساده نيست و مشكلات فراواني را به همراه دارد.
با پيشرفت صنعت نيمه هادي ها و استفاده آن ها در سيستم قدرت، مفهوم سيستم هاي انتقال انرژي انعطاف‌ پذير(FACTS) مطرح شد كه بدون احداث خطوط جديد بتوان از ظرفيت واقعي سيستم انتقال استفاده كرد.
پيشرفت اخير صنعت الكترونيك در طراحي كليدهاي نيمه هادي با قابليت خاموش شدن و استفاده از آن در مبدل هاي منبع ولتاژ در سطح توان و ولتاژ سيستم قدرت علاوه بر معرفي ادوات جديدتر، تحولي در مفهوم FACTS به وجود آورد و سيستم هاي انتقال انرژي را بسيار كارآمدتر و موثرتر خواهد كرد.
براي درك بهتر و شناساندن مشخصات برجسته اين ادوات در قدم اول لازم است مشكلات موجود سيستم هاي انتقال انرژي شناسائي شوند. آن گاه راه حل هاي كلاسيك براي رفع آن ها بيان ميشوند. مبدل‌هاي منبع ولتاژ، كه ساختار كليه ادوات جديد FACTS بر آن استوار است در بخش بعدي مورد بحث قرار ميگردد و در خاتمه نسل جديد ادوات FACTS معرفي ميشوند.

بازدید : 424
11 زمان : 1399:2

تعداد صفحات:26
نوع فايل:word
فهرست مطالب:
مقدمه
بتن سبك
طبقه بندي بتن سبك بر مبناي مقاومتي
بتن سبك غيرسازه‌اي
بتن سبك با مقاومت متوسط
بتن سبك سازه اي
بتن اسفنجي
بتن اسفنجي چيست؟
نسبت مواد مختلف در بتن اسفنجي
رفتار بتن اسفنجي
نصب بتن اسفنجي
نقش مواد افزودني (مواد داراي خواص سيماني) در بتن اسفنجي
مزاياي بتن اسفنجي و موارد استفاده از آن
بتن اليافي
روشهاي سبك سازي بنا
روشهاي توليد سريع و اصولي بنا
بهره گيري از مواد جديد
راه كارهايي جهت اقتصادي نمودن استفاده از بتن اليافي
اقدامات صورت گرفته در زمينه تكنولوژي بتن اليافي
منابع

مقدمه:
در دنياي پيشرفته امروزي و با توجه به پيشرفت هاي صورت گرفته در زمينه هاي مختلف علمي صنعت بتن نيز دچار تحول گرديده كه توليد بتن سبك نيز حاصل همين پيشرفت ها ميباشد. بتني كه علاوه بر كاهش بار مرده ساختمان از نيروي وارد به سازه در اثر شتاب زلزله ميكاهد و در صورت تخريب وزن آوار حاصل نيز كاهش مييابد و امروزه آن را بعنوان بتن قرن مي نامند.
بتن سبك با توجه به ويژگي هايي كه دارد داراي كاربردهاي مختلف ميباشد كه برحسب وزن مخصوص و مقاومت فشاري آن تفكيك ميگردد.

بازدید : 412
11 زمان : 1399:2

تعداد صفحات:68
نوع فايل:word
فهرست مطالب:
مقدمه
فصل اول – سنسورها و انواع آن
تعريف عبارت سنسور
تكنيك هايي در توليد سنسور
فصل دوم – معرفي سنسورهاي نوري
سنسورهاي نوري
مقاومت هاي نوري
ساير مواد نيمه هادي براي سنسورهاي نوري
فوتو ترانزيستور، فوتوديود و فوتو دارلينگتون
فصل سوم – انواع مختلف آشكار ساز نوري
انواع مختلف سنسور نوري
اشكال كاربردي سنسورهاي نوري
فصل چهارم – بررسي كاربرد سنسور نوري در زمينه هاي مختلف
حسگر ها در رباتيك
كاربرد سنسور در دوربين ديجيتال
فصل پنجم – مثال و شبيه سازي
مدار الكترونيكي روبات نورياب
مدار كليد حساس به نور
منابع و ماخذ

مقدمه :
سنسورها از نظر كيفي مرحله جديدي را در استفاده هر چه بيشتر از همه امكاناتي كه توسط علم ميكرو الكترونيك به وجود آمده است، به ويژه در زمينه پردازش اطلاعات عرضه مي كند. سنسورها رابط بين سيستم كنترل الكتريكي از يك طرف و محيط، عمليات، رشته كارها يا ماشين از طرف ديگر هستند. درگذشته تكامل سنسور قادر به هم گامي با سرعت تكامل در صنعت ميكروالكترونيك نبوده است. در واقع در اواخر دهه 1970 و اوايل دهه 1980 تكامل سنسور در سطح بين المللي بين سه و پنج سال عقب تر از تكامل علم ميكروالكترونيك در نظر گرفته ميشد. اين حقيقت كه ساخت عناصر ميكروالكترونيك غالباً بسيار ارزانتر از وسائل اندازه گيري كننده اي (سنسورهايي) بود كه آن ها احتياج داشتند يك مانع جدي در ازدياد و متنوع نمودن كاربرد ميكرو الكترونيك پردازشگر اطلاعات در گستره وسيعي از عمليات و رشته كارها بود. چنين اختلافي بين علم ميكرو الكترونيك مدرن و تكنولوژي اندازه گيري كننده كلاسيكي تنها توانست به واسطه ظهور تكنولوژي سنسورهاي مدرن برطرف شود. به اين دليل، امروزه سنسورها بعنوان يكي از عناصر كليدي جهت تكامل پيوسته و شتابان علم ميكروالكترونيك شمرده مي شوند.
كار تحقيقاتي و تكاملي گسترده در شاخه هاي مختلف تكنولوژي سنسور در سطح بين المللي آغاز شد. حاصل اين فعاليت آنست كه امروزه تجارت سنسور از يكي از بالاترين نرخ هاي رشد سالانه بهره مند ميباشد. از آن جا كه سنسورها وسيله اساسي براي بدست آوردن همه اطلاعات لازم در رابطه با وضعيت هاي مختلف عمليات و محيط هستند (در مفهوم عام كلمه)، بنابراين آن ها در امكانات كاملا جديدي را به روي اتوماسيون طيفي از عمليات در صنعت، منزل، كارخانه، كاربردهاي طبي، و ساير بخش ها مي گشايند .اين مثال ها براي كارخانه هاي تمام اتوماتيك و مجتمع آينده تنها ميتواند به كمك سنسور ها تحقق يابد.

بازدید : 463
11 زمان : 1399:2

تعداد صفحات:82
نوع فايل:word
فهرست مطالب:
بتن در كارگاه‌هاي ايران
اجزاء تشكيل دهنده بتن
سنگدانه
رفتار فيزيكي سنگدانه‌ها
چگونه شن و ماسه تهيه ميشود؟
تفاوت سنگدانه‌هاي شكسته و طبيعي
حداكثر بزرگي سنگدانه‌ها
شكل هندسي سنگدانه‌ها
مقدار آب همراه سنگدانه‌ها
شن و ماسه استاندارد
مشخصات بهترين درشت دانه (شن) براي بتن
مشخصات بهترين ريزدانه (ماسه) براي بتن
رفتار شيميايي سنگدانه‌ها
آزمايش‌هاي سنگدانه‌ها
نمونه‌برداري
حمل و نقل
آزمايش تعيين مقدار رطوبت سنگدانه‌ در كارگاه
آزمايش تعيين مقاومت سنگدانه‌ها در مقابل يخبندان
آزمايش تعيين مقاومت سنگدانه‌ها در مقابل ضربه
تعيين خستگي سنگدانه‌ها
آزمايش هم‌ارز ماسه (تعيين مقدار خاك رس و لاي در ماسه)
مواد نامطلوب در سنگدانه‌ها
آب
چرا در بتن آب ميريزيم؟
آب در بتن داراي سه نقش اساسي است
آب بهينه بتن چه مقدار است؟
مواد مضري موجود در آب
خزه و جلبك
ذرات معلق و لاي
چربي ها
فاضلاب
pH آب
كربنات‌ها
اسيدها
قليايي ها
سولفات‌ها
كلرورها
املاح فلزات
آب دريا
آب باران
ماشين‌آلات
ماشين‌آلات بتن‌سازي
بيل
بتونير
مركز بتن‌سازي (Batching)
ماشين‌آلات حمل بتن
قالب‌ بندي
ايستايي قالب
دوام قالب
انواع قالب‌ بندي از لحاظ مصالح
اجزاي مختلف قالب‌ بندي
رويه
داربست
قطعات تثبيت كننده
زمان قالب‌ برداري
مراحل مختلف قالب‌ بندي
طريقه قالب‌ برداري
استفاده مجدد از قالب
انحراف از نقشه (رواداري يا تولرانس)
بتن‌ريزي و نگهداري آن
بتن‌ريزي
بازديد آرماتور بندي
بازديد از قالب‌ بندي
بازديد تجهيزات
مصرف قلوه سنگ در روز بتن‌ ريزي
آب انداختن بتن
ويبره كردن بتن
بتن‌ريزي در هواي باراني
بتن‌ريزي در هنگام وزش باد
بتن‌ريزي در هواي سرد
بتن‌ريزي در هواي گرم
نگهداري بتن

بتن در كارگاه‌هاي ايران:
مصرف بتن به علت ارزاني و دسترسي راحت به آن، روز به روز در جهان توسعه مييابد، زيرا مصالح مورد مصرف بتن كه عبارت است از شن و ماسه و سيمان، به حد وفور در همه جاي كره زمين يافت ميشود. از طرفي به علت عمر طولاني قطعات بتني و مقاومت آن در مقابل عوامل جوي در مقايسه با ساير مصالح ساختماني مخصوصاً فولاد توجه مهندسين را در سراسر دنيا به خود معطوف داشته است و در نتيجه كاربرد آن روز به روز زيادتر ميشود، بطوري كه درصد ساختمان‌هاي بتني بلند به نسبت ساختمان‌هاي ديگر، روز به روز به فزوني است، حتي در بعضي ممالك، احداث ساختمان‌هاي بلند فقط با بتن آرمه مجاز ميباشد.
ديگر از جاذبه‌هاي بتن، آن است كه اين جسم قبل از سخت شدن سيال بوده و در هر شكل و قالبي كه ريخته شود، بعد از سخت شدن به همان شكل در مي آيد. از اين راه معماران و طراحان ميتوانند اجزاء مختلف ساختمان را از لحاظ هندسي به دلخواه خود طراحي كنند. در عوض، عيب بزرگ قطعات بتن آرمه، اين است كه هيچ وقت فرضيات محاسباتي كاملاً مطابق با واقعيت نيست، ‌زيرا اولين فرضي كه يك محاسب ساختمان بتن آرمه ميكند، آن است كه بتن و فولاد را جسم همگن فرض نموده و تنش و كرنش آن ها را مساوي در نظر ميگيرد و محاسبات خود را بر مبناي آن شروع كرده و ادامه ميدهد، در صورتيكه اين فرض كاملاً با حقيقت وفق نميدهد و تنش و كرنش بتن فولاد كاملاً مساوي نيستند، ولي اگر در طراحي بتن و ساخت و اجرا و عمل‌آوري و بالاخره در نگهداري آن دقت كافي به عمل آيد و بتن مطابق دستورالعمل‌هاي موسسات تحقيقاتي و استانداردهاي دنيا طراحي و ساخته شود، شايد به ميزان قابل توجهي فرضيات و عمل به همديگر نزديك شوند.

تعداد صفحات : 153

درباره ما
موضوعات
آمار سایت
  • کل مطالب : 1532
  • کل نظرات : 0
  • افراد آنلاین : 14
  • تعداد اعضا : 3
  • بازدید امروز : 1401
  • بازدید کننده امروز : 1
  • باردید دیروز : 453
  • بازدید کننده دیروز : 0
  • گوگل امروز : 2
  • گوگل دیروز : 1
  • بازدید هفته : 2159
  • بازدید ماه : 6401
  • بازدید سال : 20022
  • بازدید کلی : 1174882
  • <
    آرشیو
    اطلاعات کاربری
    نام کاربری :
    رمز عبور :
  • فراموشی رمز عبور؟
  • خبر نامه


    معرفی وبلاگ به یک دوست


    ایمیل شما :

    ایمیل دوست شما :



    کدهای اختصاصی