مبلمان اداری کلاسیک
ثبت شرکت - ثبت برند
مبلمان اداری
خرید بک لینک
تور دبى
تور مراکش
برچسب دیواری
ساعت دیواری
تور مالدیو پاییز 96
تور سیشل پاییز 96
تور موریس پاییز 96
تور استرالیا پاییز 96
تور آفریقای جنوبی پاییز 96
تور پوکت پاییز 96
تور آرژانتین پاییز 96
تور مراکش پاییز 96
تور تایلند پاییز 96
تور برزیل پاییز 96
فروش جوجه شتر مرغ
فروش جوجه مرغ بومی
تور قبرس شمالی
تور کوش آداسی
ساخت وبلاگ
سنگ تراورتن
ویزاى کانادا
تور پوکت
تور تایلند
تور کانادا
سنسور
درباره من
موضوعات
    موضوعي ثبت نشده است
نويسندگان
برچسب ها
عضویت در خبرنامه
    عضویت لغو عضویت

ورود اعضا
    نام کاربری :
    پسورد :

عضویت در سایت
    نام کاربری :
    پسورد :
    تکرار پسورد:
    ایمیل :
    نام اصلی :

نويسنده :ketabpich
تاريخ: 1396/3/23  ساعت: ۲۱

تعداد صفحات:79

نوع فايل:wrord

فهرست مطالب:

چكيده

فصل اول : آشنايي با AVR Atmega16

تفاوت microprocessor با microcontroller

ساختار كلي ميكرو كنترلر AVR Atmega32

انواع حافظه در ميكرو كنترلرهاي خانواده AVR

حافظه FLASH داخلي قابل برنامه ريزي

حافظه SRAM

حافظه EEPROM

نحوه برنامه ريزي حافظه FLASH

Codevision AVR

AVR studio

BASCOM AVR

پورت هاي ميكرو كنترلر Atmega 32

رجيستر DDRX

رجيستر PINX

رجيستر PORTX

Timer/Counter در ميكرو كنترلر Atmega32

رجيستر هاي ميكرو كنترلر Atmega32

مبدل آنالوگ به ديجيتال ADC(A to D)

فصل دوم :  آشنايي با Key pad 3×4

روش scanning

نحوه تعيين فواصل زماني در روش scanning

فصل سوم : آشنايي با LCD 2×16

ال سي دي هاي كاراكتري

نحوه فرمان دادن به LCD

فصل چهارم : آشنايي با Programer

ساختار يك Programmer

كابل انتقال فايل از كامپيوتر به ميكرو

برنامه مديرت پروگرام كردن ميكرو

برنامه Pony prog

پروگرام كردن ميكرو بوسيله كامپايلرها

پايه هاي مربوط به پروگرام كردن ميكرو

برنامه پروگرامر PROGISP

فصل پنجم : آشنايي با سنسور LM35

فصل ششم : آشنايي بابرُد سوراخ دار، Pin header، تك سوئيچ

Micro Box

برد سوراخ دار

Pin header

BOX

تك سويچ

فصل هفتم : مبدل آنالوگ به ديجيتال و ارتباط سريال USART

ارتباط سريال USART

فصل هشتم : نحوه اتصال قطعات و شماتيك كلي مدار

فصل نهم

سورس برنامه ها

 

چكيده:

هدف از انجام اين پروژه نمايش دماي محيط بر روي LCD به صورت وايرلس و فعال كردن يك رله زماني كه دما به مقدار مشخصي رسيد ميباشد كه اين دما را ميتوان به صورت دستي از طريق يك صفحه كليد مقدار دهي نمود. همچنين همان طور كه از عنوان پروژه مشخص است اين سيستم قادر خواهد بود در صورت افزايش ناگهاني دما كه ممكن است بر اثر آتش سوزي رخ داده باشد هشدار دهد.

مدار اين پروژه از دو بخش تشكيل شده است. بخش فرستنده كه در آن سنسور دماي LM35DZ به ميكروكنترولر متصل شده و با استفاده از مبدل آنالوگ به ديجيتال يا ADC، دما كه يك سيگنال آنالوگ ميباشد به سيگنال ديجيتال تبديل شده و توسط ارتباط سريال و يك ماژول فرستنده HM-TR به سمت بخش گيرنده فرستاده ميشود. در سمت گيرنده سيگنال ارسال شده توسط يك ماژول HM-TR دريافت شده و به يك ميكروكنترولر داده ميشود و بر روي يك LCD كه به ميكروكنترولر متصل است نمايش داده ميشود. در اين بخش دو LED وجود دارد كه يكي زماني كه دما بطور ناگهاني بالا رود و ديگري زماني كه دما از مقداري كه خودمان مشخص كرده ايم بالاتر رود روشن ميشوند.

لينك دانلود

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1396/3/23  ساعت: ۲۱

تعداد صفحات:84

نوع فايل:wrord

فهرست مطالب:

چكيده

مقدمه

فصل اول : كليات

پيشينه كار و تحقيق

روش كار و تحقيق

فصل دوم : آشنايي با code vision

آشنايي با برنامه CodeVisio

تنظيمات اوليه ميكرو

برنامه ميكرو كنترلر

برنامه ريزي ميكرو كنترلر

فصل سوم : المان هاي مدار

LCD كاراكتري

سنسور MQ2

آشنايي با سنسور هاي گازي سري MQ

انواع سنسور هاي گاز

سنسور هاي نوري

ULN2003 & Stepper Motors

فصل چهارم : فرستنده گيرنده بيسيم RFM12

آشنايي با ماژول RF12

ويژگيهاي ماژول RF12

كاربرد‌هاي عمومي‌ ماژول RF12

واحدهاي داخلي

فيلتر كردن داده ها و بازيابي كلاك

بازيابي كلاك

اسيلاتور كريستالي Crystal oscillator

كاشف ولتاژ سطح پايين باطري Low Battery Voltage Detector

تايمر بيدار ساز Wake-Up Timer

راه اندازي رخدادها Event Handling

واسط كنترلي Interface and Controller

شرح وظايف پايه هاي ماژول

مشخصه هاي كاري DC ماژولRF

فصل پنجم : ميكرو كنترلر AVR

تفاوت ميكرو كنترولر و ميكرو پروسسور

ساختار داخلي ميكروكنترلر

رجيستر هاي همه منظوره (General Purpose Register)

معماري AVR

انواع ميكرو هاي AVR

انواع حافظه در ميكرو هاي AVR

قابليت ها

وسايل جانبي

AVR Timer/ Counter

تايمر بعنوان ابزار ايجاد تاخير

RTC (Real Time Clock)

مبدل آنالوگ به ديجيتال ADC(A to D)

ارتباط سريال سنكرون SPI

فصل ششم : طرح مدار و برنامه فرستنده و گيرنده

المان‌هاي الكترونيكي فرستنده‌

مدار فرستنده

بررسي‌ نرم افزار و كدهاي سيستم فرستنده

توابع مربوط به ماژول بيسيم

شماتيك مدار گيرنده

بررسي‌ نرم افزار و كدهاي سيستم گيرنده

فصل هفتم : نتيجه گيري

نتيجه گيري

ضميمه

كد سورس مدار فرستنده

كد گيرنده

منابع و ماخذ

فهرست منابع فارسي

سايت ها

 

چكيده:

اين پروژه در دو بخش كلي مدار فرستنده و مدار گيرنده طراحي شده است. در بخش فرستنده مدار ما شامل سنسورهاي نور (Photocell) و دود (MQ2) و همچنين دو Stepper Motor و يك LCD است كه در ادامه مقاله به تفصيل به آن ها اشاره خواهيم كرد و توضيحات مربوطه را ارائه خواهيم داد. اطلاعات كنترلي از طريق ماژول بيسيم با فركانس MHz915 براي گيرنده ارسال مي شود و پس از دريافت و اعمال دستورات لازم و محاسبات نتيجه روي نمايشگر نشان داده مي شود.

ولي به طور كلي اگر بخواهيم به عملكرد و وظيفه اين پروژه به طور خلاصه اشاره كنيم بايد از اين جا شروع كنيم كه در ابتدا زماني كه مدار را روشن ميكنيم سنسورهايي كه از قبل كاليبره شده اند شروع به كار ميكنند به اين صورت كه براي هر سنسور يك رنجي در نظر گرفته شده كه بر اساس آن مقدار، موتورها شروع به چرخش ميكنند و همان ميزان در LCD موجود در مدار گيرنده نمايش داده ميشود.

 

مقدمه:

هر سيستم مبتني بر پردازنده براي ارتباط با دنياي خارج، به انتقال داده احتياج دارد. انتقال داده به دو روش سريال و موازي صورت ميگيرد.

در روش موازي، در هر واحد زماني يك بيت، منتقل ميشود. و در روش سريال، در هر واحد زماني 8 بيت اطلاعات، منتقل ميشود. تبادل داده سريال در اغلب ميكرو كنترولر ها گنجانده شده است. نحوه انتقال سريال بصورت دو طرفه است. بدين معني كه، در عين حال كه يك طرف داده خودش را ميفرستد؛ طرف ديگر هم بتواند داده خودش را ارسال كند بدون اينكه تداخلي پيش بيايد.

برنامه هايي كه براي ميكرو كنترولر مينويسند را بايد پس از كامپايل كردن، توسط يك پرو گرامر در ميكرو كنترولر بارگذاري مي كنند. حافظه فلش ميكرو كنترولر هاي AVR، امكان برنامه ريزي تراشه و تغيير كد را در چند ثانيه فراهم مي آورد. علاوه بر اين، تراشه هاي AVR، داراي قابليت “برنامه ريزي درون مدار” هستند. بدين معنا كه ميتوان بدون خارج كردن ميكرو كنترولر از مدار آن را به صورت سريال برنامه ريزي نمود.

مدار پروگرامر از طريق پايه هاي SCK،MOSI،MISO با ميكرو كنترولر ارتباط برقرار ميكند. و كد hex برنامه را در آن بار گذاري مي كند و يا از آن مي خواند.

لينك دانلود

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/16  ساعت: ۱۰

تعداد صفحات:114

نوع فايل:word

فهرست مطالب:

چكيده

ابزار دقيق هوشمند

سنسورها و عملگرها

كنترل كننده هاي منطقي قابل برنامه ريزي

سيستم هاي نمايش، سوپر و ايزري و مديريت

طرح سيستم  PLC

واحد پردازنده مركزي

پردازشگر

حافظه

منبع تغذيه

برنامه مونيتور (PROGRAM MEMORY) PM

مدول هاي ورودي و خروجي (I/O)

مدول خروجي

بدنه و قفسه

اجزاءكنترلي PLC

مدارات Modem

مدارات Driver/Regulator

مدارات Receiver

كارت هاي كنترلي I/O

WATCHDOG TIMER

تقويت كننده هاي عملياتي (OP-AMP)

تقويت كننده هاي ايزولاسيون

واحدهاي اختياري

چاپگر

ساختمان و طرز كار توربين

سيستم كنترل هواي ورودي AIR FLOW CONTROL

محفظه احتراق

شير تخليه هوا COMPONENTS

توربين كمپرسور Gas Turbine

توربين نيرو Power Turbine

مراحل عملكرد توربين

مراحل استارت

سيستم هاي كنترل توربين

وسايل جانبي سيستم كنترل توربين

واحد واحد اندازه گيري سرعت

اندازه گيري دما

اندازه گيري ارتعاش

تنظيم سوخت

كنترل سرعت و حرارت توربين

سيستم مونيتورينگ HMI

شرح سيستم كنترل توربو ژنراتورها

سخت افزار و نرم افزار

مشخصات سيستم

مشخصات كابينت ها

كابل ها

جعبه هاي اتصال

مشخصات و مزاياي سيستم هاي كنترل داخلي

كنترلگرها (PLC)

شبكه هاي ارتباطي

ايستگاه هاي اپراتوري و نرم افزار HMI

برنامه ريزي كنترلگرها و برنامه HMI

گرداننده جديد شير كنترل (Control Valve Drive)

ساختار برنامه كنترلي PLC

PLC زمان سنجي چرخه

حالت Run/Stop

حافظه برنامه Program Memory

شناخت PLC هاي زيمنس

ساختار نرم افزاري برنامه ها

ساختار فيزيكي plc500

فهرست منابع

 

چكيده:

بشر همواره به فكر استفاده از ابزارها و روش هايي است كه نقايص فيزيكي و ذهني خود را مرتفع ساخته و به يك تكامل نسبي در اين خصوص نايل گردد و حداكثر بهره جويي را در مقاطع زماني مشخص با هزيه كمتر و كيفيت بالاتر كسب كند.

استفاده از وسايل اندازه گيري و كنترل به منظور صرفه جويي در بكارگيري نيروي انساني، افزايش دقت و در جهت تامين ايمني كاركنان و تاسيسات هر روز روند روبه رشدي دارد. هرچند كه سيستم هاي كنترلي نيوماتيكي و الكترونيكي، در جهت عدم وابستگي، مناسب است اما به دليل تكامل صنعت، دستگاه هاي قديمي از رده خارج شده و استفاده از دستگاه هاي جديد كنترلي و هوشمند اجتناب ناپذير ميگردد. امروزه با مطالعات و بررسي هاي فراوان و پيشرفت در تكنولوژي ديجيتال و بهره گيري از پروتكلهاي مخابراتي، سيستم هاي كنترل جديدتري ارائه ميگردد كه امتيازات بيشتري نسبت به گذشته داشته و به سرعت جايگزين سيستم هاي آن ها ميگردند.

در مجموع، به كارگيري كليه عناصر ابزارها و جريان هايي كه در فرآيند يك صنعت منجر به افزايش بهره وري و يا بهينه سازي توليد محصول به هر لحاظ ميگردد، پديده اي است به نام اتوماسيون صنعتي؛ كه اهداف زير را دنبال مي كند:

1- بهينه سازي توليد محصول و يا جريان فرآيند

2-رعايت كليه شاخصهاي استاندارد با استفاده از منابع آماري تجربي

3-بالا بردن حفاظت و امنيت سيستم، با استفاده از ابزارهاي مناسب و برنامه ريزي شده

4-استفاده از ماشين آلات و تجهيزات به جاي نيروي انساني متخصص

نقش نيروي انساني در اجراي خودكار فرآيند كه در تمام مراحل فقط كاربرد ماشين آلات و ابزار كنترلي و اپراتوري اجراي عمليات توسط دستگاه هاست.

5-كاهش زمان در تصميم گيري و كنترل فرآيند

6-كاهش هزينه در پژوهش، توليد و عمليات

 

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/16  ساعت: ۱۰

تعداد صفحات:133

نوع فايل:word

فهرست مطالب:

چكيده

فصل اول - ارائه كليات پيرامون شبكه هاي حسگر بي سيم

مقدمه

شبكه هاي حسگر بي سيم

معرفي شبكه هاي حسگر بي سيم

ساختارخودكار

ساختار نيمه خودكار

ساختمان گره

ويژگي‌هاي عمومي يك شبكه حسگر

فصل دوم

طراحي يك پلت فرم شبكه هاي حسگر بي سيم براي تشخيص و شناسايي رويداد هاي نادر، تصادفي و بي دوام

ديدگاه كلي طراحي پلت فرم

مقياس پذيري

هوشياري منفعل

سنسورها براي تشخيص و طبقه بندي

دستيابي به طول عمر

چرخه وظيفه

دوباره آماده سازي قابل بازيابي

بسته بندي

مباحثه (گفتگو)

ارزيابي طراحي پلت فرم

فصل سوم - ميان افزار

كاربرد ميان افزار در شبكه حسگر بي سيم

موارد استفاده ميان افزار

نقش هاي عملياتي ميان افزار

سناريوهايي براي تغيير رفتار ميان افزار

بررسي اجمالي ميان افزار

چارچوب خدمات

مشخصات درخواست خدمات

مثالي براي مشخصات درخواست خدمات

تركيب خدمات معتبر

كنترل استفاده از منابع

امتياز سازگاري در ميان افزار

ظرفيت جريان فرايند برنامه ريزي

زير فرآيندهاي فرآيند منابع محاسبه

زير روند رزرو از روند منابع

نقاط سازگاري در قابليت هاي برنامه ريزي ظرفيت

اجرا و ارزيابي

فصل چهارم

نتيجه طراحي ميان افزار براي شبكه هاي حس گر بي سيم

بررسي اجمالي از خوشه (سلول) بر اساس معماري ميان افزار

لايه كلاستر

لايه منابع مديريت

مسائل طراحي و چالش ها

كنترل خوشه

مديريت منابع

هماهنگي Intercluster

هماهنگي Intercluster

تشريح مسئله

اكتشافي سه فاز

نتايج شبيه سازي

كاربرد ميان افزار در شبكه حسگر بي سيم

فصل پنجم - كارهاي مرتبط انجام شده

پروژه ExScal

نرم افزار و الزامات آن

توپولوژي، پوشش و استقرار

نرم افزار معماري

مطمئن پايه و به كارگيري برنامه هاي كاربردي

كاربرد محلي سازي

محيط برنامه، امنيت

مديريت

آزمايش هاي انجام شده

نتيجه گيري

منابع

 

فهرست اشكال:

پروفايل مصرف دريافت قدرت هاي پايين

شبكه ردياب

مدار تايمر نارنجك XSM

سناريوي به تصوير كشيده شده استقرار در مورد استفاده شده

خدمات از انواع متا

جزء ، تركيب دهنده ، مولفه داده متا

تركيب خدمات معتبر

دنباله اي از مراحل پردازش براي رسيدن به يك تركيب بندي در خدمات

نمودار كشاكش (تداخل ، برخورد)  مهم و مستقيمي را براي منابع به تصوير ميكشد

دنباله اي از مراحل پردازش مورد نياز براي برنامه ريزي ظرفيت

نيازمندي هاي حافظه قبل از مداخله و رفتارهاي كامپوننت

برنامه ريزي ظرفيت و رزرو منابع (در زمان اجرا)

سه سطح از انتزاع و نقشه برداري خودشان به نقش عملياتي مربوطه

مشتري API

نمايندگي در لايه استقرار

خدمات درخواست به سيستم

درخواست هاي خدمات همان طور كه واقعا آن ها پردازش شده اند

RAM يا استفاده از حافظه پويا براي مورد استفاده شده مشخص

فلش و يا استفاده از حافظه استاتيك براي مورد استفاده مشخص شده (تعيين شده)

درخواست پس از تغيير استراتژي برنامه ريزي، به سيستم

درخواست به واقع پردازش، پس از تغيير استراتژي برنامه ريزي

استفاده از حافظه RAM در زمان (در حين) پردازش اين درخواست ها

استفاده از حافظه فلش در زمان (در حين) پردازش اين درخواست ها

معماري ميان افزار بر مبناي كلاستر

كسب بهبود طول عمر

توپولوژي ExScal

ورودي با نقطه از دست دادن

يكي كردن ورودي با نقطه هاي الگو

PIR سنسور

دامنه زمان

دامنه فركانس

سيگنال خروجي از زنجير سيگنال سنسور PIR

 

 

چكيده:

بازتاب، ثابت شده است به مكانيزمي قدرتمند براي رسيدن به انطباق نرم افزار در معماري ميان افزار، اگر چه اين مفهوم نيازمند آن است كه ميان افزار باز شده و آن همه اصلاح عملكرد و رفتار آن ممكن شود. اين منجر به سيستم هايي ميشود كه به سختي  درك و آناليز ميشوند و ممكن است به سرعت باعث پايمال كردن توسعه دهندگان شود . امن تر و قابل فهم تر از روشهاي مدلسازي و مطرح،  استفاده و اجراي قسمتي از اصول بازتابنده است در حالي كه محدود كردن دامنه ممكن از اصلاح، بعنوان ميان افزار شفاف است. ما در نظر گرفتيم كه با توجه به محدوديت منابع در شبكه هاي حسگر بي سيم (شبكه گيرنده بي سيم) بهتر است : محدود كردن ويژگي هاي بازتابنده به منظور صرفه جويي چرخه محاسباتي و كاهش ترافيك شبكه. علاوه بر اين ما باور نميكنيم همه تغييرات دروغ را در توسعه دهنده نرم افزار  و ما جدا از نگراني هاي عملياتي، اصلاح نقشه هاي مختلف و سطوح انتزاعي نقشهاي مختلف عملياتي را معرفي ميكنيم . معماري ميان افزاري را فراهم ميكنيم كه استراتژي كنترل نقاط سازگاري را معرفي كنيم كه در دسترس هستند براي قابليت هاي اوليه  تغييررفتار ميان افزار. رويكرد ما از طريق اجراي اثبات نمونه مفهوم كه براي كمك به استفاده هاي صنعتي در حوزه تداركات و سناريوي نياز براي تغيير، در  قابليت هاي برنامه ريزي ظرفيت ميان افزار ارزيابي شده است. نمايش نتايج نشان ميدهد كه چگونه تغييرات در الزامات كسب و كار ممكن است از طريق حمايت موثر منجر به  معرفي نقاط سازگاري است.

 

مقدمه:

شبكه هاي حسگر بي سيم ( شبكه گيرنده بي سيم ) حمايت مستقري ميكنند از ادغام داده هاي زيست محيطي به برنامه هاي كاربردي و بطور معمول با عمر طولاني، بزرگ مقياس و داراي منابع محدود، همچنين منوط هستند به شبكه هاي غيرقابل اعتماد و تحرك گره اي. در چنين محيط هايي، نرم افزار نياز به انطباق رفتار و ويژگي هاي آن و كنار آمدن با تغيير زمينه و شرايط عملياتي دارد، نتيجه آن، تكامل نرم افزار و پيكر بندي دوباره يك ضرورت است.

شبكه هاي حسگر بي سيم يك تكنولوژي جذاب و مهم است كه در سال هاي اخير مورد توجه محققين قرار گرفته است. آن ها در يك سطح وسيعي از كاربردهاي غير نظامي و نظامي، از قبيل ردگيري اشياء، زير ساخت نظارتي، دريافت محل اصلي و مراقبت از محل جنگان را توسعه داده اند. بطور نمونه يك WSN شامل صدها هزار گره هاي ذره اي حسگر هستند كه با كانال هاي بي سيم و انجام توزيع دريافت و به اشتراك گذاري فرآيند هاي داده ها، ارتباط دارند.

تكنيك هاي بسيار پيشرفته WSN بر روي كاربردهاي آسان و سادهِ گردآوري داده و در بيشتر مواقع بر روي حمايت از كاربردهاي يك شبكه تمركز دارند. بنابراين معمولا طراحي پروتكل ها و كاربردهاي شبكه به دقت تركيب ميشوند يا حتي مانند يك رويه يكپارچه تركيب ميشوند. به هر حال چنين رويه هايي منحصر به فرد هستند و اعمال نفوذ مستقيم تراكنش ها با سيستم عامل هاي جا داده شدهِ اصولي يا حتي اجزاء سخت افزاري از گره هاي ديگر ني به صورت انحصاري انجام مي شوند. تصور ما از توسعه WSN در نهايت، طراحي روش هاي كاربردي سيستمي است كه بر اساس استانداردها است و قابل انتقال بر روي سيستم ها ميباشد. علاوه بر اين، كاربردهاي متعددي نياز به اجراي همزمان بر روي يك WSN خواهند داشت. بطور مثال ساختار يك سيستم نظارت ممكن است نياز به مشاهده همزمان درجه حرارت و تشعشع، كنترل شكاف ها بر روي ديوار، حركت افراد و حتي ارتباط با سيستم هاي ساختمان هاي نزديك داشته باشد.

 

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/16  ساعت: ۱۰

تعداد صفحات:132

نوع فايل:word

فهرست مطالب:

چكيده

مقدمه

فصل اول - شبكه ي حسگر بي سيم

مقدمه

بررسي اجمالي مسائل كليدي

انواع شبكه حسگر بي سيم

ساختارهاي شبكه حسگر بي سيم

ويژگيهاي سخت‌افزاري

كاربردهاي شبكه ي حسگر بي سيم

عوامل موثر بر شبكه حسگر بي سيم

پشته پروتكلي

نتيجه گيري بخش

فصل دوم - انواع الگوريتم هاي خوشه بندي

مقدمه

بررسي كلي خوشه بندي

الگوريتم هاي خوشه بندي سلسله مراتبي

الگوريتم هاي خوشه بندي طيفي

الگوريتم هاي خوشه بندي مبتني بر شبكه گريد

الگوريتم خوشه بندي مبتني بر تراكم

الگوريتم هاي خوشه بندي پارتيشن بندي

الگوريتم خوشه بندي ژنتيك k-means براي تركيب مجموعه داده هاي عددي و قاطعانه

الگوريتم مقياس

الگوريتم k-means هماهنگ

مقداردهي k-means با استفاده از الگوريتم ژنتيك

رويكرد مجموع خوشه ها براي داده هاي تركيبي

الگوريتم تكاملي تركيبي

اصلاح جهاني الگوريتم k-means

الگوريتم ژنتيك k-means سريع

نتيجه گيري بخش

فصل سوم - الگوريتم هاي خوشه بندي در شبكه حسگر بي سيم

مقدمه

چالش ها در الگوريتم هاي خوشه بندي در شبكه حسگر بي سيم

فرآيند خوشه بندي

پروتكل هاي خوشه بندي موجود

الگوريتم هاي ابداعي

طرح هاي وزني

طرح هاي شبكه گريد.

طرح هاي سلسله مراتبي و ديگر طرح ها

الگوريتم هاي خوشه بندي در شبكه هاي حسگر بي سيم ناهمگون

مدل ناهمگون براي شبكه هاي حسگر بي سيم

طبقه بندي ويژگي هاي خوشه بندي در شبكه هاي حسگر بي سيم ناهمگون

الگوريتم خوشه بندي براي شبكه هاي حسگر بي سيم ناهمگون

نتيجه گيري بخش

فصل چهارم - بررسي دو الگوريتم خوشه بندي EECS و A-LEACH

مقدمه

EECS

نماي كلي مشكلات

جزئيات EECS

تحليل EECS

شبيه سازي

رويكردهاي آينده

A-LEACH

آثار مربوطه

تجزيه و تحليل انرژي پروتكل ها

A-LEACH

شبيه سازي

رويكردهاي آينده و نتيجه گيري

نتيجه گيري

منابع و مراجع

 

فهرست اشكال:

طبقه بندي موضوعات مختلف در شبكه حسگر بي سيم

ساختار كلي شبكه حسگر بي سيم

ساختار خودكار

ساختار نيمه خودكار

ساختار داخلي گره حسگر

پشته پروتكلي

نمونه اي از الگوريتم GROUP

الف)ساختار شبكه

ب)شبكه بعد از چند دور

الف) ساختار شبكه

ب) خوشه بندي EDFCM

سلسله مراتب خوشه در زمينه سنجش

دياگرام شماتيك از مناطق در اندازه هاي مختلف

تاثير هزينه سرخوشه مورد نظر

پديده شيب در شبكه

الف) توزيع غير يكنواخت

ب) توزيع يكنواخت

الف) صحنه معمولي

ب) صحنه ي بزرگ

الف) صحنه معمولي

ب) صحنه بزرگ

الف) صحنه معمولي

ب) صحنه بزرگ

تعداد خوشه ها در هر دور در EECS و LEACH

الف) صحنه معمولي

ب) صحنه بزرگ

مدل شبكه اي A-LEACH

شبكه حسگر بي سيم با مدل A-LEACH

طول منطقه ثبات براي مقادير مختلف ناهمگوني

تعداد گره هاي زنده نسبت با دور با m=0.1 و a=1

تعداد گره هاي زنده نسبت به دور با m=0.3 و a=1

تعداد گره هاي زنده نسبت به دور با m=0.5 وa=1

 

فهرست جداول:

مقايسه الگوريتم هاي خوشه بندي طرح سلسله مراتبي

مقايسه الگوريتم هاي خوشه بندي

مفهوم نمادها

توصيف حالات يا پيغام ها

پارامترهاي شبيه سازي

 

چكيده:

شبكه هاي حسگر بي سيم شامل تعدا زيادي از سنسورهاي كوچك است كه كه ميتوانند يك ابزار قوي براي جمع آوري داده در انواع محيط هاي داده اي متنوع باشند. داده هاي جمع آوري شده توسط هر حسگر به ايستگاه اصلي منتقل ميشود تا به كاربر نهايي ارائه ميشود. يكي از عمده ترين چالش ها در اين نوع شبكه ها، محدوديت مصرف انرژي است كه مستقيما طول عمر شبكه حسگر را تحت تاثير قرار مي دهد، خوشه بندي به عنوان يكي از روشهاي شناخته شده اي است كه به طور گسترده براي مواجه شدن با اين چالش مورد استفاده قرار ميگيرد.

خوشه بندي به شبكه هاي حسگر بي سيم معرفي شده است چرا كه طبق آزمايشات انجام شده، روشي موثر براي ارائه بهتر تجمع داده ها و مقياس پذيري براي شبكه هاي حسگر بي سيم بزرگ است. خوشه بندي همچنين منابع انرژي محدود حسگرها را محافظت كرده و باعث صرفه جويي در مصرف انرژي ميشود.

مقدمه:

شبكه هاي حسگر بيسيم كه براي نظارت و كنترل يك محيط خاص مورد استفاده قرار ميگيرند، از تعداد زيادي گره حسگر ارزان قيمت تشكيل شده اند كه بصورت متراكم در يك محيط پراكنده مي شوند. اطلاعات جمع آوري شده به وسيله حسگر ها بايد به يك ايستگاه پايه منتقل شوند. در ارسال مستقيم، هرحسگر مستقيماً اطلاعات را به مركز مي فرستد كه به دليل فاصله زياد حسگرها از مركز، انرژي زيادي مصرف مي كنند. در مقابل طراحي هاي يكه فواصل ارتباط را كوتاه تر ميكنند، ميتوانند دوره حيات شبكه را طولاني تر كنند و لذا ارتباط هاي چند گامي در اين گونه شبكه ها مفيدتر و مقرون به صرفه تر از ارتباط هاي تك گامي هستند. اما در ارتباط هاي چند گامي نيز بيشتر انرژي نودها صرف ايجاد ارتباط با حسگرهاي ديگر مي شود، كه منجر به مصرف زياد انرژي درحسگرها ميگردد. يكي از راه حل هاي اين مشكل، خوشه بندي گره ها است. خوشه بندي كردن به اين صورت است كه شبكه را به تعدادي خوشه هاي مستقل قسمت بندي مي كنيم كه هر كدام يك سر خوشه دارند كه همه اطلاعات را از گره هاي داخل خوش هاش جمع آوري مي كند. سپس اين سرخوشه ها اطلاعات را مستقيماً يا به صورت گام به گام با تعداد گام هاي كمتر و صرفا با استفاده از نودهاي سر خوشه به مركز اصلي ارسال ميكنند. خوشه بندي كردن مي تواند به ميزان زيادي هزينه هاي ارتباط اكثر گره ها را كاهش دهد.

 

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/16  ساعت: ۱۰

تعداد صفحات:143
نوع فايل:word
فهرست مطالب:
چكيده
فصل اول : نانو تكنولوژي و تاريخچه توليد الياف نانو
مقدمه
نانو مواد
طبقه بندي نانو مواد
نانو فيلم هاي نازك
نانو پوشش ها
نانو خوشه ها
نانو سيم ها و نانو لوله ها
روزنه هاي نانو
نانو ذرات
الياف نانو
تاريخچه توليد الياف نانو
فصل دوم : روش هاي توليد الياف نانو
تهيه الياف نانو به روش كاتا ليزور شناور
اثر سولفور
اثر دماي تبخير ماده خام
اثر هيدروژن
ريسندگي الكترو اسپينينگ
تئوري و فرآيند ريسندگي الكترو اسپينينگ
ريسندگي الكترو اسپينينگ
ريسندگي الكترو اسپري
ريسندگي الكترو مذاب
ريسندگي الكترو محلول
شروع جريان سيال پليمري و تشكيل مخروط تيلور
ناپايداري خمشي
ريسندگي الياف نانو پليمري
ساختار و مورفولوژي الياف نانو پليمري
پارامترهاي فرآيند و مورفولوژي ليف
ولتاژ اعمال شده
فاصله جمع كننده - نازل
شدت جريان پليمر
محيط ريسندگي
پارامترهاي محلول
غلظت محلول
رسانايي محلول
فراريت حلال
اثر ويسكوزيته
خواص الياف نانو
خواص حرارتي
خواص مكانيكي
مزاياي ريسندگي الكترو
معايب ريسندگي الكترو
بررسي اهداف ايده ال در ريسندگي الكترو
ريسندگي الياف دو جزئي پهلو به پهلو
خصوصيات الياف الكترو ريسيده شده
ريسندگي الكتريكي الياف نانو از محلول هاي پليمري
ريسندگي الكترو الياف پر شده با نانو تيوب هاي كربن
تعيين خصوصيات مكانيكي و ساختاري الياف كربن الكترو ريسيده شده
فصل سوم : كاربردهاي مختلف الياف نانو و نانو تكنولوژي در صنعت نساجي
مقدمه
الياف نانو گرافيت و كربن
نمونه بافت و تزريق دارو
الياف نانو با خاصيت كاتاليزوري
فيلتراسيون
كاربردهاي كامپوزيتي
كاربردهاي پزشكي
پيوندهاي شيميايي
نمونه بافت
پوشش زخم
تزريق دارو
دندانپزشكي
مواد آرايشي
لباس محافظتي
كاربرد الكتريكي و نوري
كشاورزي
كاربردهاي نانو تكنولوژي در نساجي
دفع آب (آب گريزي)
محافظت در برابر اشعه uv
ضد باكتري
آنتي استاتيك
ضد چروك
كنترل كيفيت در توليد كامپوزيت هاي الياف نانو الكترو اسپان
توزيع يكنواختي الياف نانو
سنجش الياف به صورت اتوماتيك
آزمايش مقاومت در برابر عوامل محيطي
دستگاه آزمايش خميدگي DL
الياف نانو كامپوزيت الكترو اسپان براي تشخيص بيو لوژيكي اوره
تاثير افرودن الياف كربن بر روي خواص مكانيكي و كريستالي شدن پلي پروپيلن
ضميمه
نتيجه
منابع و مآخذ

فهرست اشكال:
دستگاه اختراعي فرمالز
مقالات منتشر شده در مورد ريسندگي الكترو در چند سال اخير
توزيع انتشارات در سراسر جهان
سهم كشورها در اختراعات ثبت شده بين سال هاي 2003-2000
نماي شماتيك دستگاه
مرفولوژي محصول در مقادير مختلف تيوفن
مرفولوژي محصول در دماهاي مختلف تبخير ماده خام
رابطه بين قطر الياف و شدت تبخير ماده خام
تاثير مقدار جريان هيدروژن بر روي قطر الياف نانو كربن
نمايش شماتيك ريسندگي الكترو
ريسندگي الكترو اسپري
ريسندگي الكترو مذاب
اجزاء دستگاه ريسندگي الكترو
مراحل شكلگيري مخروط تيلور
تفاوت قطر الياف در روش هاي مختلف ريسندگي
دستگاه ريسندگي الكترو پهلو به پهلو
تخلخل در الياف نانو
رابطه قطر الياف نانو با نسبت سطح مخصوص
تفاوت الياف نانو با موي انسان
طرح شماتيك فرآيند ريسندگي الكترو
تصوير ميكرسكوپي SEM الياف متقاطع نانو در پايه PEO جمع شده روي صفحه آلومينيومي
MCWNT آرايش يافته در MCWNT /PEO/ SDS
تصوير ميكروسكوپي TEM، مغزي و غلاف به ترتيب PSU و PEO
ريسندگي الكترو كامپوزيت هاي SWNT
طيف هاي رامان نانو فيبري هاي كامپوزيت
تصاوير TEM فيبريل هاي نانو كامپوزيت
بررسي منحني هاي AFM نانوفيبريل هاي PAM/SWNT
پراش اشعه X دسته اي از الياف الكترواسپان
پراش اشعه X دسته اي از الياف الكترواسپان كربونيزه شده
طيف رامان نانو فيبريل هاي PAN كربونيزه شده
طيف هاي EELS لايه ليف كربونيزه شده و گرافيت با عنوان مرجع
تصاوير SEM از سطح شكست الياف PAN كربونيزه شده
ميكرو عكس هاي TEM از لبه شكسته الياف كربونيزه شده
تصاوير جنبي از بخش طولي الياف
تصوير SEM ليف نانو كه به سر Catilever، AFM نصب شده است
منحني فراواني - فركانس ليف نانو كربونيزه شده
تصاوير SEM سطوح شكست الياف كربونيزه شده بعد از كشش تا نقطه شكست
توزيع احتمال ويبول براي الياف كربونيزه شده
تنش شكست ليف كربن به عنوان تابعي از طول Gauge
تقسيم بندي كلي كاربردهاي الياف نانو
موارد مصرف مختلف الياف نانو
تاثير كاهش قطر الياف در ميزان كارآيي فيلترها
كاربرد الياف نانو در توليد راكت تنيس به منظور بهبود قابليت هاي آن
پيوند رگ با استفاده از الياف نانو
پوشش زخم توسط ريسندگي الكترو
ماسك ساخته شده از الياف نانو
لباس هاي محافظ
الياف نوري نانو
استفاده از الياف نانو جهت دفع آفات
استفاده از الياف نانو جهت جلوگيري از حمله حشرات به گياهان
طرح شماتيك نحوه كنترل بازده online
فرآيند بدون كنترل
فرآيند تحت كنترل
تصوير SEM ليف نانو به منظور اندازه گيري قطر آن
نمونه بعد از تغيير شكل
نمونه قبل از تغيير شكل
تصاوير SEM نمونه هاي بدست آمده
توزيع اندازه الياف نانو
ميكرو عكس هاي SEM، كامپوزيت هاي PP و CNF/ PP

فهرست جداول:
تاثير مقدار تيوفن بر روي مرفولوژي محصول
ضرائب خمشي الياف نانو كربن الكترواسپان بر پايه PAN
خصوصيات مكانيكي كامپوزيت هاي CNF/ PP
نقطه ذوب و درجه كريستالي كامپوزيت هاي CNTF/ PP
پارامترهاي محاسبه شده از فرآيند كريستالي شدن غير ايزوترمال كامپوزيت هاي CNF/ PP
پارامترهاي محاسبه شده از فرآيند كريستالي شدن غير ايزوترمال كامپوزيت هاي CNF/ PP

چكيده:
به منظور توليد الياف نانو دو روش كلي وجود دارد، روش اول، توليد الياف با استفاده از كاتاليزور ميباشد كه در اين روش الياف در بستر مخصوص يا محلول اختصاص داده شده منعقد ميشوند، استفاده از كاتاليزور شناور براي توليد مناسب تر از كاتاليزور دانه دار شده
ميباشد زيرا ميزان كاتاليزور موجود در بستر محلول همواره تحت كنترل ميباشد. روش ديگر توليد الكتروريسي ميباشد كه ميتوان نانو الياف منفرد و ممتد را به ميزان توليد بالا تهيه نمود. در اين روش نانو الياف پليمري ميتوانند مستقيماً از محلول پليمري به نانو الياف پليمري تبديل شوند.
الكتروريسي ريسيدن نانو الياف پليمري تا قطر چند ده نانو متر، روشي است كه تكيه بر نيروهاي الكترواستاتيكي دارد. در اين فرآيند، بين قطره اي از محلول پليمري يا مذاب كه در نوك نازل آويزان است و يك صفحه فلزي جمع كننده پتانسيل الكتريكي اعمال ميشود. با بالا رفتن ميدان الكتريكي قطره پليمري شروع به كشيده شدن ميكند تا اين كه اين نيرو بر نيروي تنش سطحي قطره غلبه كرده و يك جت شارژ شده بسيار نازك از محلول پليمري از سطح قطره خارج شده و به سمت فلز جمع كننده سرعت ميگيرد. پس از طي مسير كوتاهي دافعه متقابل شارژهاي حمل شده در سطح جت، آن را خم كرده و جت، مسير خود را به صورت مارپيچ و حلقه اي ادامه خواهد داد. بدين ترتيب جت در فاصله كم نازل تا جمع كننده ميتواند مسير بسيار زيادي را طي كرده، تا نيروهاي الكتريكي آن را هزاران بار كشيده و ظريف نمايند.
استفاده از اين تكنولوژي هاي جديد ما را در انجام كارهايي كه زماني غير ممكن مينموده رهنمون ميسازد، در سالهاي اخير از اين شيوه براي ساخت الياف نانو در محدوده وسيعي از پليمرها و در كاربردهاي مختلف نظير ساخت فيلترها، تقويت در كامپوزيت ها، كامپوزيت هاي شفاف، نانو الياف كربن، نانو الياف هادي، نانو الياف توخالي، نانو الياف سراميكي، سنسورهاي بسيار حساس، قالب براي رشد بافت زنده بدن، پر كردن بافت هاي آسيب ديده، بافت هاي ضد باكتري، حمل دارو، پوشش زخم، ماسك هاي آرايشي و ... به كار رفته است.

مقدمه:
مفهوم نانو تكنولوژي جديد نمي باشد و از بيش از 40 سال پيش آغاز گرديده است، بر اساس تعريف NNI نانو تكنولوژي عبارت است از به كار بردن ساختارهايي با حداقل يك بعد در اندازه نانومتر براي ساخت مواد، وسايل و سيستم هايي با خواص بديع و قابل توجه كه مربوط به اندازه نانو آن ها ميباشد. نانو تكنولوژي نه تنها ساختارهاي كوچك توليد ميكند بلكه تكنولوژي ساخت پيشرفته اي مي باشد كه مي تواند كنترل كم هزينه اي براي ساختار ماده ايجاد نمايد. نانو تكنولوژي در بهترين صورت به اين گونه توصيف ميشود كه فعاليت هايي هستند در حد اتم ها و مولكول ها كه كاربردهايي در دنياي واقعي دارند. قطعات نانو كه بطور معمول در محصولات تجاري استفاده ميشوند، در حدود يك تا صد نانومتر هستند.
نانو تكنولوژي بصورت روزافزوني توجه دنيا را به خود جلب نموده چرا كه بعنوان ارائه كننده پتانسيل بالايي از محدوده هاي وسيع، مصارف شناخته شده است. خواص جديد و
بي نظير مواد نانو نه تنها دانشمندان و محققين بلكه تجارت را به خود جلب كرده كه به دليل پتانسيل بالاي اقتصادي آن ميباشد.
همچنين نانو تكنولوژي پتانسيل تجاري واقعي براي صنعت نساجي دارد اين امر بطور عمده به خاطر اين واقعيت است كه روشهاي مرسوم كه براي دادن خواص مختلف به پارچه استفاده ميگردند معمولا اثر دائمي ندارند و كاآيي خود را بعد از شستشو و يا بر اثر پوشيدن از دست ميدهند. نانو تكنولوژي ميتواند دوام بالايي براي پارچه ها ايجاد كند چرا كه قطعات نانو سطح بزرگي از نسبت مساحت به حجم و نيز انرژي سطحي بالايي دارند، بنابراين بستگي بيشتري با پارچه داشته و منجر به افزايش ماندگاري كاربردي آن ميگردد. به علاوه پوششي از ذرات نانو روي پارچه بر خاصيت عبور هواو زير دست آن اثري نمي گذارد بنابراين مزيت استفاده از نانو تكنولوژي در صنعت نساجي در حال افزايش است. خواصي كه با استفاده از نانو تكنولوژي به پارچه داده ميشود عبارتند از آب گريزي، ضد خاك، ضد چروك، ضد باكتري، آنتي استاتيك، مقاومت در برابر اشعه يو وي، كند كردن توسعه آتش، بهبود در رنگ پذيري و غيره كه در فصل هاي بعدي به آن ها اشاره خواهد شد.

 

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/16  ساعت: ۰۹

تعداد صفحات:113
نوع فايل:word
فهرست مطالب:
چكيده
مقدمه
فصل اول – كليات
مقدمه
تاريخچه
كاربردهاي انرژي خورشيدي
فصل دوم – انواع كلكتور خورشيدي و بررسي استانداردهاي مربوطه
مقدمه
كلكتورهاي صفحه تخت
صفحه جاذب
صفحات پوششي يا جداري
محفظه كلكتور
كلكتور لوله خلاء
كلكتور سهموي
زاويه شيب كلكتور خورشيدي
مقايسه استاندارهاي تست كلكتورهاي تخت خورشيدي 9806-1 ISO، EN 12975-2 و ASHRAE 93
استاندارد ASHRAE 93
تست ثابت زماني – τ
تست بازده حرارتي – gη
تست اصلاح كننده زاويه تابش – Kθb(θ)
توزيع دماي ورودي به كلكتور براي تست بازده حرارتي
مدت زمان انجام تست
استاندارد ISO 9806-1 و EN 12975-2
تست ثابت زماني – τ
تست بازده حرارتي – gη
تست اصلاح كننده زاويه تابش – Kθb(θ)
توزيع دماي ورودي به كلكتور براي تست بازده حرارتي
روش تست شبه ديناميكي استاندارد EN12975-2
مقايسه استانداردها
فصل سوم – آبگرمكن‌ هاي خورشيدي و بررسي استاندارد‌هاي مربوطه
مقدمه
اجزاي آبگرمكن خورشيدي
شرح دستگاه آبگرمكن خورشيدي
انواع آبگرمكن‌هاي خورشيدي
سيستم گردش اجباري
سيستم گردش اجباري – مدار بسته
سيستم گردش اجباري – مدار باز
سيستم با گردش طبيعي
سيستم گردش طبيعي – ترموسيفون – مدار باز
سيستم گردش طبيعي – ترموسيفون – مدار بسته
بررسي و مقايسه استانداردهاي آبگرمكن خورشيدي
استاندارد ISO 9459
استانداردهاي راندمان (عملكرد) سيستم
روش آزمون بر اساس تست در فضاي داخلي
آزمون در فضاي خارج براي سيستم‌هاي فقط خورشيدي
آزمون در فضاي خارجي براي سيستم‌هاي آبگرمكن خورشيدي با گرمكن كمكي با يك مخزن ذخيره
استانداردهاي اروپايي براي سيستمهاي گرمايش خورشيدي
استانداردهاي اروپايي جديد
روشهاي تست براي سيستم‌هاي آبگرمكن‌ هاي خورشيدي (EN12976-2 و ENV 12977-2)
استاندارد ASHRAE 95
مقايسه استاندارد‌هاي تست آبگرمكن خورشيدي
مقايسه سه استاندارد9459-2 ISO ، ISO 9459-3 و ASHRAE 95
فصل چهارم -0 معادلات حاكم بر تعيين عملكرد كلكتور‌هاي صفحه تخت و حل نمونه عددي
مقدمه
تابش خورشيدي
تشعشع جذب شده و عبور تشعشع از ميان پوشش شيشه‌اي
انعكاس تشعشع
جذب پوشش شيشه‌اي
حاصلضرب ضريب هاي عبور – جذب (τα)
كلكتورهاي صفحه تخت و معادلات مربوطه
انرژي مفيد
توزيع دما در كلكتورهاي صفحه تخت خورشيدي
لوله در زير صفحه جاذب
لوله در بالاي صفحه جاذب
لوله در وسط صفحه جاذب
ضريب دفع گرماي كلكتور و ضريب جريان
تست كلكتور
بازده
حل عددي
مشخصات تجهيزات مورد استفاده
مشخصات فني كلكتور صفحه تخت
حل معادلات براي يك حالت نمونه
فصل پنجم – آزمايش، نتايج و ترسيم نمودارهاي مربوطه
مقدمه
روش انجام آزمايش
نتايج
نمودار‌ها و تحليل
نمودارهاي داده‌هاي هواشناسي
تغييرات دماي خروجي از كلكتور بر حسب تغييرات دبي
بررسي انرژي دريافتي مدل تئوري و تجربي
بررسي بازده كلكتور در مدلهاي تئوري و تجربي
نمودار‌هاي افت دما در مسير آب ورودي
بررسي اثر پارامترهاي مختلف
تاثير موقعيت قرارگيري لوله و صفحه جاذب
تاثير زاويه كلكتور خورشيدي
تاثير تعداد شيشه‌هاي محافظ كلكتور
تاثير فاصله بين رايزرهاي صفحه جاذب بر بازده كلكتور
تاثير پوشش صفحه جاذب بر بازده كلكتور
تاثير ضخامت عايق حرارتي بر بازده كلكتور
تاثير جنس عايق بر بازده كلكتور
تاثير نوع سيال انتقال حرارت بر بازده كلكتور
تاثير فشار گاز داخل كلكتور بر بازده
نتيجه گيري
پيشنهادات براي ادامه طرح
منابع و ماخذ
فهرست منابع فارسي
فهرست منابع لاتين
چكيده انگليسي

فهرست جدول ها:
شرايط تست شبه ديناميكي
دماي متوسط سيال و شرايط آب و هوايي براي هر نوع روز
بيشترين دماي خروجي بر اساس نوع كلكتور
مقايسه حدود مجاز پارامتر‌هاي مختلف جهت دستيابي به شرايط يكنواخت در سه استاندارد
شرايط آب و هوايي لازم در سه استاندارد
شرايط زماني بازه داده و پيش بازه داده براي تست در حالت كلكتور ساكن
تشابه پارامتر‌هاي تست آبگرمكن خورشيدي درISO 9459-2، ISO 9459-3 ، ASHRAE 95
تفاوت هاي پارامتر‌هاي تست آبگرمكن خورشيدي درISO 9459-2 ، ISO 9459-3، ASHRAE 95
مشخصات فني كلكتور مورد آزمايش، ساخت شركت دريا
پارامترهاي موثر جهت حل يك نمونه عددي
مقادير محاسبه شده با دبي 200 ليتر بر ساعت
مقادير محاسبه شده با دبي 150 ليتر بر ساعت
مقادير محاسبه شده با دبي 100 ليتر بر ساعت

فهرست شكل‌ها:
كاركرد كلكتور صفحه تخت در حالت كلي
كلكتور صفحه تخت به همراه اجزاي آن
صفحه جاذب
فرآيند حرارتي يك كلكتور صفحه تخت
كلكتورتخت، مايع و هوايي
كلكتور لوله‌اي تحت خلاء
انواع كلكتورهاي تحت خلاء
كلكتور سهموي
زاويه كلكتور خورشيدي
طرح ساده‌اي از يك آبگرمكن خورشيدي
طرح كلي يك آبگرمكن خورشيدي به همراه قسمتهاي مختلف آن
سيستم اجباري – مدار بسته
سيستم اجباري – مدار باز
آبگرمكن با سيستم ترموسيفون
سيستم گردش طبيعي – ترموسيفون – مدار باز
سيستم گردش طبيعي – ترموسيفون – مدار بسته
زواياي تابش و انعكاس در محيطي با ضريب شكستهاي n_1 و n_2
عبور از يك پوشش شيشه‌اي غير جاذب
جذب تابش خورشيد توسط صفحه جاذب زير شبكه پوشش شيشه‌اي
برش عمودي از يك گردآورنده خورشيدي
توزيع دماي صفحه جاذب
شبكه گرمايي يك گردآورنده صفحه تخت با يك پوشش شيشه‌اي
شبكه گرمايي معادل
تركيب لوله و صفحه جاذب
معادله انرژي صفحه جاذب
مقاومتهاي ايجاد شده در مقابل جريان گرما به سيال در حالتيكه لوله در زير صفحه جاذب باشد
نحوه اتصال لوله و صفحه جاذب در حالتيكه لوله در زير صفحه جاذب باشد
نحوه اتصال لوله و صفحه جاذب در حالتيكه لوله در بالاي صفحه جاذب باشد
مقاومتهاي ايجاد شده در مقابل جريان گرما به سيال در حالتيكه لوله در بالاي صفحه جاذب باشد
نحوه اتصال لوله و صفحه جاذب در حالتيكه لوله در وسط صفحه جاذب باشد
مقاومتهاي ايجاد شده در مقابل جريان گرما به سيال در حالتيكه لوله در وسط صفحه جاذب باشد
پيرانومتر و دما سنج نصب شده در سايت تست
باد سنج و ثبت كننده اطلاعات
باد سنج، ثبت كننده اطلاعات و مخزن ذخيره
سنسور دما و نمايش گر ديجيتالي
پمپ و مانومتر
شير كنترل كننده دبي و كلكتور صفحه تخت
نماي كلي از تجهيزات نصب شده در سايت تست دانشگاه آزاد اسلامي تهران جنوب
داده‌هاي ثبت شده توسط ايستگاه هواشناسي در روز 8 آگوست 2011
دماي هوا و ميزان تشعشع در روز 8 آگوست 2011 براي نقاط داده برداري شده
دماي ورودي و خروجي در حالتهاي تئوري و تجربي با دبي آب 200 ليتر بر ساعت
دماي ورودي و خروجي در حالتهاي تئوري و تجربي با دبي آب 150 ليتر بر ساعت
دماي ورودي و خروجي در حالتهاي تئوري و تجربي با دبي آب 100 ليتر بر ساعت
ميزان خطاي اطلاعات ثبت شده از سايت تست
اختلاف دماي ورودي و خروجي براي دبي هاي مختلف
انرژي دريافتي در مدل تئوري و تجربي با دبي آب 200 ليتر بر ساعت
انرژي دريافتي در مدل تئوري و تجربي با دبي آب 150 ليتر بر ساعت
انرژي دريافتي در مدل تئوري و تجربي با دبي آب 100 ليتر بر ساعت
انرژي دريافتي در مدل تئوري و تجربي با دبي‌هاي آب گذرنده مختلف
مقدار انرژي كسب شده توسط كلكتور صفحه تخت
مقايسه حرارت اندازه‌گيري شده و مورد انتظار براي كلكتور با دبي 200 ليتر بر ساعت
مقايسه حرارت اندازه‌گيري شده و مورد انتظار براي كلكتور با دبي 150 ليتر بر ساعت
مقايسه حرارت اندازه‌گيري شده و مورد انتظار براي كلكتور با دبي 100 ليتر بر ساعت
بازده مدل تئوري و تجربي با دبي آب گذرنده 200 ليتر بر ساعت
بازده مدل تئوري و تجربي با دبي آب گذرنده 150 ليتر بر ساعت
بازده مدل تئوري و تجربي با دبي آب گذرنده 100 ليتر بر ساعت
مقايسه بازده مدل تئوري و تجربي با دبي‌هاي آب گذرنده متفاوت
مقايسه مقادير تئوري و تجربي بازده كلكتور
افت دماي مسير مخزن تا ورودي كلكتور با دبي 200 ليتر بر ساعت
افت دماي مسير مخزن تا ورودي كلكتور با دبي 150 ليتر بر ساعت
افت دماي مسير مخزن تا ورودي كلكتور با دبي 100 ليتر بر ساعت
انرژي دريافتي كلكتور صفحه تخت با توجه به موقعيت قرار گيري لوله و صفحه جاذب
انرژي دريافتي كلكتور صفحه تخت با توجه به زاويه كلكتور با سطح زمين
انرژي دريافتي كلكتور صفحه تخت با تعداد كاورهاي شيشه‌اي كلكتور
بازده كلكتور صفحه تخت با توجه به فاصله بين رايزرهاي صفحه جاذب
بازده كلكتور صفحه تخت با توجه به ضريب نشر كاور شيشه‌اي كلكتور
نمودارهاي بازده كلكتور خورشيدي براي ضخامت‌هاي مختلف عايق حرارتي
اثر جنس عايق بر بازده كلكتور خورشيدي
اثر نوع سيال انتقال حرارت بر بازده كلكتور خورشيدي
اثر فشار گاز داخل كلكتور بر بازده

چكيده:
هدف از اين تحقيق مقايسه تحليل تئوري و نتايج تجربي حاصل از تست عملي بر روي يك كلكتور خورشيدي صفحه تخت، با توجه به شرايط آب و هوايي شهر تهران ميباشد. به اين منظور ابتدا يك كلكتور صفحه تخت از نظر ساختمان، بازده و ساير پارامترها بر طبق روابط انتقال حرارت بصورت تئوري مدل شده، پس از آن با استفاده از يك سيستم آبگرمكن خورشيدي و استفاده از يك كلكتور صفحه تخت بعنوان جاذب انرژي خورشيد، داده‌هاي مورد نياز بطور تجربي استخراج شده‌اند.
سيستم آبگرمكن خورشيدي مورد آزمايش كه در مركز تحقيقات انرژي خورشيدي دانشگاه آزاد اسلامي واحد تهران جنوب مستقر است، و بر اساس استاندارد ISO 9806-1 مدل شده‌است، از يك كلكتور صفحه تخت و يك مخزن ذخيره تشكيل شده‌است. كلكتور شامل دو هدر افقي به قطر داخلي mm12 و 12 عدد رايزر عمودي ميباشد كه بصورت موازي قرار گرفته‌اند. صفحات جاذب از فين هاي مجزا تشكيل شده‌اند. جنس فين ها از آلومينيوم بوده و از شيشه معمولي به ضخامت mm4 بعنوان پوشش صفحه جاذب براي جلوگيري از اتلافات جابجايي و تابشي استفاده شده‌است. از آنجايي كه آزمون‌ها در فصل تابستان انجام شده‌ است و دماي هوا در هنگام شب به گونه‌اي نيست كه باعث يخ‌زدگي آب داخل كلكتور شود، به اين جهت تنها از آب (بدون ضد يخ) بعنوان سيال انتقال حرارت استفاده شده‌است. همچنين دماي محيط، ميزان تابش روي سطح كلكتور صفحه تخت و سرعت باد محوطه مورد آزمايش توسط يك دستگاه ثبت كننده اطلاعات ثبت شده‌اند.
بازده و انرژي مفيد كسب شده توسط كلكتور بصورت تجربي با مقادير حاصل از مدل تئوري مقايسه شده و بر طبق نتايج به‌دست آمده مدل تجربي با مدل تئوري مطابقت خوبي دارد. آزمايشات فوق با دبي‌هاي مختلف انجام گرفت و با كاهش دبي سيال عبوري از كلكتور، افزايش در انرژي مفيد كسب شده و بازده كلكتور مشاهده گرديد. بر اساس آزمايشات انجام شده، حداكثر بازده ممكن براي يك كلكتور خورشيدي صفحه تخت زماني حاصل ميشود كه حتي الامكان دماي آب ورودي كلكتور به دماي هواي محيط نزديك باشد. همچنين عوامل تاثير گذار بر بازده يك كلكتور خورشيدي صفحه تخت، از جمله فاصله بين رايزرها، نوع پوشش شيشه‌اي كلكتور، ضخامت عايق حرارتي، جنس عايق، نوع سيال انتقال حرارت و… مورد بررسي و تحليل قرار گرفته و با توجه به مقايسه هاي انجام شده ميتوان نمودار‌هاي مفيدي پيرامون بازده كلكتور بر اساس پارامتر‌هاي تاثيرگذار رسم نمود. اين نمودار‌ها علاوه بر استفاده در صنعت ساخت تجهيزات خورشيدي، ميتواند بعنوان راهنما جهت تست ساير كلكتور‌هاي مشابه مورد استفاده قرار گيرد.

مقدمه:
با درنظر گرفتن محدوديت منابع سوخت فسيلي و همچنين با توجه به اينكه استفاده غير اصولي از سوخت هاي فسيلي باعث آسيب ديدن محيط زيست ميشود، لذا تحقيقات و كاربردهاي انرژي‌هاي تجديد پذير از اهميت ويژه اي برخوردار گشته است.
مشكل محدوديت منابع انرژي، كم و بيش براي كليه كشورها، اعم از صنعتي، توسعه يافته و يا در حال توسعه، مشترك ميباشد. در كشورهاي مختلف بطور ميانگين بيش از نود درصد از مصارف انرژي در ارتباط با صنعت، حمل و نقل و ساختمان‌ها است و بين اين سه بخش ساختمان‌هاي مسكوني و تجاري بيش از 40٪ را به خود اختصاص داده‌اند. قابل توجه است كه عمده ترين مصرف انرژي در ساختمان‌ها در تامين گرمايش، سرمايش و تهويه مطبوع ساختمان‌ها در فصول سرد و گرم ميباشد.
در اين ميان انرژي خورشيد، با توجه به اينكه انرژي كاملا پاك و عاري از هرگونه آلودگي بوده و پتانسيل آن در ايران بالا ميباشد، از اهميت بيشتري برخوردار است. كشور ايران در بين مدارهاي 25 تا 40 درجه عرض شمالي قرار گرفته است و در منطقه‌اي واقع شده كه به لحاظ دريافت انرژي خورشيدي در بين نقاط جهان در بالاترين رده‌ها قرار دارد. ميزان تابش خورشيدي در ايران بين 1800 تا 2200 كيلووات ساعت بر متر مربع در سال تخمين زده شده‌است كه البته بالاتر از ميزان متوسط جهاني است. در ايران بطور متوسط ساليانه بيش از 280 روز آفتابي گزارش شده‌است كه بسيار قابل توجه است. از اين انرژي ميتوان به طرق مختلف، مثل توليد برق، گرمايش و سرمايش، توليد آب شيرين، تامين آب‌گرم و … استفاده نمود.
روش هاي گوناگوني براي استفاده از اين انرژي پاك وجود دارد، اما گرم كردن آب با استفاده از آبگرمكن‌هاي خورشيدي، به عنوان يكي از آسان ترين و اقتصادي ترين روشها شناخته شده‌است. زيرا با داشتن دانش كافي درباره تابش خورشيد، براحتي و بصورت بسيار موثرتر ميتوان انرژي خورشيد را براي گرم كردن آب مصرفي منازل و حتي كاربرهاي صنعتي به‌كار برد. مهمترين بخش يك سيستم آبگرمكن خورشيدي كلكتور خورشيدي ميباشد كه داراي انواع مختلف است. يكي از انواع اين كلكتورها كه بعلت كارايي بالا، سهولت ساخت، عدم حضور قطعات متحرك و عدم نياز به نگهداري، كاربرد بيشتري پيدا كرده است، كلكتور صفحه تخت ميباشد. در اين تحقيق كلكتور صفحه تخت از نظر ساختمان، بازده و ساير پارامترهاي انتقال حرارت بصورت تئوري و تجربي بررسي شده‌است.

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/16  ساعت: ۰۷

تعداد صفحات:34
نوع فايل:word
فهرست مطالب:
چكيده
انواع آسانسور
آسانسور حمل بار و مسافر
آسانسور خدماتي
آسانسور خودرو بر ساختمانهاي خصوصي
انواع آسانسور
آسانسورهاي بدون
آسانسورهاي گيربكس دار
سيستمهاي هيدروليك
آسانسور خودرو بر ساختمانهاي خصوصي
اجزاي اصلي تشكيل دهنده آسانسور
سيستم محركه
كابين
تابلو فرمان
ريل هاي راهنما
سيم بكسل
تراول كابل
درب طبقات
درب كابين
شاسي هاي احضار
نحوه كار آسانسور
حركت آسانسور
آسانسور با رانش مثبت (وينچي)
آسانسور با سيستم محركه كششي
انواع كابل كشي
كشش تك رشته اي
كشش دو رشته اي
كابل كشي ۲ به ۱
كابل كشي ۳ به ۱
كابل هاي توازن
اتاق ماشين آلات در سطح پايين
محرك استونه اي
كابل هاي سيمي
موتورهاي كابل پيچي
موتورهاي گير بكسي تك سرعته كشش
موتورهاي گير بكسي دو سرعته كشش
موتورهاي گير بكسي ولتاژ متغير كشش
موتورهاي بدون گير بكس ولتاژ متغير كشش
ترمزها
اتاق ماشين آلات
مقررات و توصيه هاي ايمني هنگام استفاده از آسانسور
نكاتي درباره ايمني و استفاده از آسانسور
مقررات ايمني سيستم محركه و ترمز آسانسور
مقررات ايمني ريلهاي راهنما و وزنه تعادل
مقررات ايمني سيم بكسل ها و ايمني هاي مكانيكي (ترمز ايمني، گاورنر، ضربه گير)
پروژه
سخت افزارهاي تشكيل دهنده
PLC
نقش PLC در اتوماسيون صنعتي
مزاياي استفاده از PLC
كاربردهاي PLC در صنعت
صنايع اتومبيل سازي
صنايع پلاستيك سازي
صنايع سنگين
صنايع شيميايي
صنايع غذايي
صنايع ماشيني
صنايع حمل و نقل
صنايع تبديل انرژي
خدمات ساختماني
ورودي هاي PLC
خروجي هاي PLC
ترمينال
SYSTEM SAFE
POWER
گانگ
انديكاتور
سنسور
سنسور حرارتي (PTC)
سنسور CAN,CA1
سنسور CUTOFF
موتور
نماي كلي طرح
نمايي از نرم افزار
منابع

چكيده:
آسانسوردستگاهي است دائمي كه براي جا به جايي اشخاص يا كالا، بين طبقات ساختمان بوده و در طبقات مشخصي عمل مينمايد. داراي كابيني است كه ساختار، ابعاد و تجهيزات آن به اشخاص به سهولت اجازه استفاده ميدهد و ميان ريل هاي منصوبه عمودي با حداكثر انحراف 15 درجه حركت ميكند.
آسانسور وسيله نقليه عمومي دائمي است كه بين ترازهاي از قبل تعريف شده حركت ميكند.
آسانسور تنها وسيله رفت و آمد ترافيكي است كه مورد استفاده تمامي گروه سني قرار ميگيرد و عمومي ترين وسيله جابجايي عمودي در جهان است.
آسانسور وسيله نقليه اي است كه كنترل آن به يك سيستم سپرده شده. فرمان دادن به آن به اختيار مسافر است، اما ايستادن آن در محل مقرر به عهده سيستم است.
آسانسور در داخل محيطي نصب ميشود كه از 3 قسمت تشكيل شده است:
1) موتورخانه:براي برقراري موتور و گيربكس و تابلو كنترل آسانسور و تابلو برق
2) چاه آسانسور:براي نصب درها، ريل ها و همچنين محلي براي حركت كابين و وزنه
3) چاهك:در پايين ترين قسمت چاه آسانسور، براي ضربه گيرها و بافرها
موتور گيربكس به عنوان قلب آسانسور و تابلو كنترل به عنوان مغز آسانسور عمل مينمايد.

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/16  ساعت: ۰۷

تعداد صفحات:63
نوع فايل:word
فهرست مطالب:
مقدمه اي بر معرفي مفاهيم فني لنزها
شناخت كلي لنزها
شارپنس
زاويه ديد
عمق ميدان
چگونه از عمق ميدان بهترين استفاده را بكنيم؟
پرسپكتيو
كاركرد عدسي (لنز)ها در دوربين هاي ديجيتال
چرا لنز مهم است؟
كدام مدل لنز مناسب تر است؟
انواع لنز هاي موجود كدامند؟
قابليت هاي اضافي ديگر
نكته آخر
اهميت سنسور در دوربين‌هاي ديجيتال
انواع مختلف دوربين‌هاي ديجيتال
سنسور دوربين‌هاي ديجيتال
سنسورهاي امروزي
چرا اندازه يك سنسور اهميت دارد؟
چرا سنسورها اندازه ها‌ي متفاوتي دارند؟
نمايي از يك دوربين DSLR
اندازه سنسور و ضريب‌ها
كنتراست لنز و جداول MTF
چه چيز رنگ كنتراست را ايجاد مي كند؟
جدول MTF چيست؟
كنتراست لنز و خطاهاي رايج
اهميت كنتراست لنز
تفرق نور
اعوجاج تصوير
انحناي تصوير
خطاي كروي
كما (Coma)
انعكاس تصوير
خطاي رنگي
لنز داخل چشمي (IOL)
تاريخچه
تكنيك عمل
نتايج
مزايا
معايب و عوارض
گزارش نتايج و عوارض عمل فيكو و كارگذاري لنز داخل
چشمي
هدف
روش پژوهش
نتايج
نتيجه گيري
فهرست منابع

فهرست اشكال:
تاثير تغيير فاصله كانوني بر پرسپكتيو تصوير
تصوير برش خورده ۱۰۰ درصد غير فشرده
تصوير برش خورده ۱۰۰ درصد غير فشرده
در f/4 عمق ميدان كاملا باريك است
در f/16 عمق ميدان كاملا باز است
ديافراگم:f/5.6، اندازه سوژه : 2 سانتيمتر
ديافراگم: f/5.6، اندازه سوژه: 3-4كيلومتر
ابعاد سنسورهاي ديجيتال
سنسور CMOS شركت سوني
تكنولوژي Bayer
تصاوير گرفته شده توسط يك دوربين عكاسي
سنسور Foveon

فهرست جداول:
مقايسه اندازه سنسور دوربين‌ها

مقدمه اي بر معرفي مفاهيم فني لنزها:
مطلب پيش روي شما در واقع مقدمه‌اي است بر يك سلسله مطالب در تشريح ويژگيهاي فني لنز‌هاي شركت نيكون. اما پيش از ورود به آن مطالب، به نظر مي رسد كه لازم است مقدمه اي بر مفاهيم اوليه و پايه‌اي لنزها داشته باشيم كه به آغاز مطالب بعدي كمك خواهد كرد.
بر روي هر لنز عكاسي يك سري مشخصات براي معرفي لنز حك شده است. مهم ترين آن ها را به سادگي در رينگ جلوي هر لنزي خواهيد يافت. اين مشخصات شامل: نام شركت سازنده، فاصله كانوني، بازترين دهانه ديافراگم و اندازه قطر رينگ لنز جلوي لنز است. اجازه بدهيد از آخر به اول برگرديم. اين آخري كه همراه علامت Ø قطر رينگ جلوي لنز را به ميليمتر نشان مي دهد، كه مشخص كننده اندازه فيلترها ميباشد.
بازترين عدد ديافراگم به شكلهاي مختلف نوشته مي شود، بطور مثال 1:1.4D يا f/1.4D. احتمالا بسياري از شما از كتاب فيزيك دوم دبيرستان فرمول ساده‌اي را به خاطر داريد كه عدد ديافراگم با آن محاسبه مي شد. عدد ديافراگم برابر است با فاصله كانوني تقسيم بر دهانه مفيد لنز. به كمك اين فرمول دو نكته را مي توانيم تشريح كنيم. اول آن كه، اين فرمول نشان مي دهد كه عدد ديافراگم رابطه معكوس با دهانه مفيد لنز دارد.
در نتيجه كوچكتر بودن اين عدد، نشان دهنده ديافراگم بازتر است. پس هر چه بازترين عدد ديافراگم لنز كوچك ترتر باشد نشان مي دهد كه لنز مي تواند مقدار بيشتري نور را از خود در بازترين حالت لنز عبور دهد. در نتيجه عكاس مي تواند با سرعت بالاتر فيلم يا سنسور را در معرض نور قرار دهد.
به همين جهت هر چه اين عدد كوچك تر باشد اصطلاحا مي گويند لنز سريع تر است. نكته دوم آن كه، همان طور كه در فرمول ديديم اين عدد به فاصله كانوني نيز وابسته است. به همين جهت است كه شما بروي لنزهاي با فاصله كانوني متغيير (زوم) براي بازترين عدد ديافراگم دو عدد به جاي يك عدد خواهيد ديد مثلا f/ 3.4-5.6. اين اعداد در واقع معادل عدد ديافراگم براي بازترين وضعيت ديافراگم در وايدترين و تله‌ترين حالت لنز است.
به فاصله كانوني ميرسيم، همه مي دانند كه تقريبا مهم ترين ويژگي هر لنز را با اين عدد معرفي مي كنند و عموما دسته بندي لنزها بر اساس اين عدد انجام مي شود. ما لنزها را به دو دسته عمومي، لنزهاي با فاصله كانوني ثابت و متغير (زوم) تقسيم مي كنيم. از طرف ديگر ما لنزها را با سه اصطلاح وايد، نرمال و تله دسته بندي ميكنيم. بطور عمومي لنزهاي با فاصله كانوني كمتر از لنز نرمال را وايد ناميده و به لنزهاي با فاصله كانوني طولاني تر از لنز نرمال تله گفته مي شود.
از نظر اپتيكي لنزي كه داراي زاويه ديد 45 درجه باشد لنز نرمال گفته مي شود. به واسطه عموميت دوربين‌هاي 135 اغلب عكاسان مبتدي تصور مي كنند كه هر لنز 50 ميليمتري، لنز نرمال است. در حالي كه، لنزي داراي زاويه ديد 45 درجه است كه : داراي فاصله كانوني برابر قطر گيت دوربين باشد، اندازه گيت همان اندازه نگاتيو يا سنسور دوربين است. از آن جايي كه اندازه استاندارد نگاتيو دوربين هاي 135 به اندازه 24*36 ميليمتر است. پس در واقع لنز نرمال براي اين دوربين‌ها داراي فاصله كانوني 43 ميليمتر خواهد بود.

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/16  ساعت: ۰۷

تعداد صفحات:254
نوع فايل:word
فهرست مطالب:
چكيده
فصل اول
مقدمه
تاريخچه سيستم ABS
سيستم ABS چيست؟
اصول كاركرد سيستم ABS
مزاياي ABS
مسافت هاي توقف
توقف در خط مستقيم
كنترل فرمان
احتياط هاي پيشگيرانه در سيستم ترمز ضد قفل (ABS)
اصطلاحات مربوط به ABS
سيستم هاي باز و بسته
سيستم هاي مجتمع و غير مجتمع
مدارهاي هيدروليكي
مدارهاي جلو – عقب مجزا
مدارهاي قطري مجزا
كانال هاي ABS
سيستم هاي يك كاناله
سيستم هاي سه كاناله
سيستم هاي چهار كاناله
اجزاي سيستم ABS
واحد كنترل الكترونيكي
واحد كنترل هيدروليكي
پمپ ها
سيلندر اصلي
سلونوئيدها
انباره ها و اكومولاتورها
سنسورهاي سرعت
ساير تجهيزات ورودي واحد كنترل الكترونيكي
سوئيچ شتاب جانبي
سنسور شتاب جانبي
سوئيچ چراغ ترمز
سوئيچ سطح روغن ترمز
عملكرد فعال كننده ABS
وضعيت ترمز معمولي (ABS فعال نيست)
وضعيت ترمز اضطراري (ABS فعال است)
حالت كاهش فشار
وضعيت ثابت نگه داشتن فشار
وضعيت افزايش فشار
ABS ECU
كنترل سرعت چرخ ها
سيستم هاي تويوتا
سيستم ABS چرخ عقب
اجزاي سيستم
عملكرد سيستم
سيستم ABS چهارچرخ تويوتا
اجزاي سيستم
عملكرد سيستم
ترمز معمولي
ترمز گيري ضد قفل
اخطار
تعويض اجزاء
سيستم هاي كنترل كششي ترمز
وظيفه سيستم
طراحي سيستم
سنسورهاي سرعت چرخ
مدولاتور هيدروليكي
ترمز چرخ ها
نحوه عملكرد سيستم
انواع سيستم TCS
سيستم هاي الكترونيكي پايداري خودرو (ESP)
وظيفه سيستم
طراحي سيستم
نحوه عملكرد سيستم
فصل دوم
كمربند ايمني
مقدمه
تاريخچه كمربند ايمني
دليل استفاده كم از كمربند ايمني
چگونگي عملكرد كمربند ايمني
نحوه عملكرد سيستم
تسمه هاي سيستم
ضرورت استفاده از كمربند ايمني
سعي در نصب كمربند ايمني براي صندلي هاي عقب
حركت سرنشين در خودرو
مكانيزم هاي كمربند ايمني
فصل سوم
بررسي ايمني شيشه هاي خودرو
هدف
تعاريف و اصطلا حات
شيشه لايه دار نوع A
شيشه لايه دار نوع B
شيشه آبديده
منطقه آزمون (مناطق a,b)
منطقه حاشيه (منطقه c)
منطقه ديد a
انحراف نور
تصوير ظاهري
واپيچش نور
يك دقيقه قوسي
ويژگي ها
ميزان عبور نور مرئي
واپيچش نور
شناسايي رنگ ها
كاهش نوري بعد سايش
مقاومت در برابر دماي آب جوش
مقاومت در برابر رطوبت
مقاومت در برابر ضربه مدل سر
مقاومت در برابر نفوذ گلوله (گلوله 40+225 گرمي)
مقاومت در برابرضربه گلوله (گلوله 40+225 گرمي)
شيشه لايه دار نوع B
شيشه آبديده
خرد شدگي
فصل چهارم
Air bag
آشنايي با ايربگ
انواع ايربگ
ايربگ جلو
ايربگ راننده
ايربگ مخصوص سرنشين
ايربگ جانبي
ايربگ محافظ سر
ايربگ محافظ زانو
بالشتك هاي هواي باهوش
خطرات ايربگ
راه هاي كاهش صدمات
خطرات ايربگ براي افراد پير
خطرات ايربگ براي افراد كوتاه قد
نكات ديگر در مورد خطرات ايربگ
منبع انرژي سيستم ايربگ
سيستم ايربگ با منبع انرژي گاز فشرده
مخزن تحت فشار
شير كنترل
مانيفولد
پخش كننده
بالشتك هوا
منبع انرژي توليد كننده گاز
عملكرد انفجاري سيستم توليد كننده گاز
سيستم فرمان ايربگ
مشخصات سيستم فرمان عمل ايربگ
طرح شماتيك سيستم عمل فرمان
طراحي بالشتك هوا
كليات بالشتك هوا
شبيه سازي بالشتك هوا
فرضيات موجود طراحي بالشتك هوا
معادلات كنترل كننده فرايند
معادلات قبل از برخورد
معادلات بعد از برخورد
نتايج تحليلي حاصل از مدل رياضي بالشتك هوا
خلاصه زمان بندي عمل ايربگ
بهينه سازي توليد كننده گاز ايربگ
پيشگيري از عملكرد بي موقع يا عدم عملكرد ايربگ
پيشگيري از عملكردن بي موقع سيستم
جلوگيري از عدم عملكرد سيستم ايربگ
فصل پنجم
سپر ايمني و ايمني بدنه
سپر ايمني
ايمني بدنه خودرو
ايمني خارجي خودرو
تغيير شكل بدنه خودرو پس از وارد آمدن ضربه
ايمني داخلي خودرو
فصل ششم
تداخل و نويز در خوررو
مقدمه
منابع نويز خودرو
موتور
ارتعاش داخلي خودرو
ارتعاشات خارجي موتور
نويز مكانيكي
نويز احتراق
نويز سوخت پاش
نويز سيستم هاي ورودي هوا و خروجي دود
خط انتقال قدرت
نويز گاردان
كنترل نويز
روش هاي كنترل
نويز ارتعاشي
لايه هاي ويسكوالاستيك
لايه هاي ويسكوالاستسك نامقيد (آزاد)
نويز اكوستيكي
موانع صدا
نتيجه گيري
پيشنهادات
سيستم وفقي كنترل نويز
مقدمه
توصيف سيستم
پيشرفت هاي نوين
سيستم ارتباطي و صوتي اتومبيل
مقدمه
سيستم هاي صوتي اتومبيل
شناسايي برنامه
فركانس هاي بديل
نام برنامه
اطلاعات مربوط به عبور و مرور
برنامه عبور و مرور
اعلام خبرهاي عبور و مرور
تلفن همراه
كاهش تداخل
فصل هفتم
ارگونومي سرنشين در خودرو
مقدمه
آنتروپومتري
اهداف ارگونومي
كاربردهاي ارگونومي
طراحي فضاي داخلي و اندازه هاي آن
اركان اصلي ابعاد خودرو
صندلي راننده
تكنولوژي در ساخت صندلي خودرو
سيستم ASCT
سيستم تهويه فعال و چند محوره پشت صندلي
كنترل گرها
فرمان خودرو
اهرم تعويض دنده
پدال ها
نمايشگرها
فصل هشتم
ساير تجهزات رفاهي و ايمني خودرو
سيستم كنترل الكترونيكي انتقال قدرت
وظيفه سيستم
طراحي و نحوه عملكرد سيستم
عملگرها
محدوده هاي كنترل
سيستم كنترل انتقال دنده
سيستم قفل كن مبدل گشتاور
سيستم كنترل كيفيت تغيير دنده
سيستم هاي اطلاعاتي
سيستم هاي ناوبري و هدايت خودرو
وظيفه سيستم
طراحي سيستم
نحوه عملكرد سيستم
سنسورهاي سرعت چرخ
سنسورهاي جاذبه اي زمين
سيستم هاي مكان ياب ماهواره اي
انتخاب موقعيت مقصد
حافظه سيستم
محاسبات مسير
توصيه هاي انتخاب مسير و جهت از طرف سيستم
سيستم هاي اطلاعاتي خودرو
وظيفه سيستم
طراحي سيستم
نحوه عملكرد
ورودي سيستم
خروجي اطلاعات
سيستم هاي پارك خودرو
وظيفه سيستم
طراحي سيستم
نحوه عملكرد سيستم
اصول اندازه گيري
عملكرد سيستم
اجزاء سيستم
سنسورهاي آلتراسونيك
طراحي سيستم
مشخصات نحوه انتقال و دريافت اطلاعات
المنت هاي اعلام و اخطار و نمايش اطلاعات
صفحه نمايشگر
اخطارهاي صوتي
محاسبات مقدار فاصله
سيستم هاي لامپ هاي جلو
لامپ هاي ليترونيك
وظيفه سيستم
طراحي سيستم
نحوه عملكرد
الگوي روشنايي
لامپ هاي گازي Xenon
واحد كنترل الكترونيك
انواع سيستم
لامپ هاي پروجكشن PES
لامپ هاي انعكاسي
لامپ هاي Bi- Litronic
سيستم كنترل سطح نور لامپ هاي جلو
وظيفه سيستم
طراحي و نحوه عملكرد سيستم
سيستم استاتيك
سيستم ديناميك
سيستم هاي تميز كننده
سيستم هاي شيشه شوي و برف پاك كن
وظيفه و نيازمندي هاي سيستم
طراحي سيستم
نحوه عملكرد سيستم
سيستم هاي شيشه شوي و برف پاك كن
سيستم هاي شيشه شوي
سيستم هاي برف پاك كن و شيشه شوي
سيستم هاي تميز كننده چراغ هاي جلو
وظيفه سيستم
طراحي و نحوه عملكرد سيستم
سيستم شيشه شوي فشار بالا
استانداردهاي سيستم
سنسورهاي باران و آلودگي
سيستم هاي ضد سرقت خودرو
سيستم هاي قفل مركزي درها
وظيفه سيستم
نحوه عملكرد
سيستم هاي آلارم (هشدار دهنده)
وظيفه سيستم
طراحي و نحوه عملكرد
سيستم هاي اوليه
حفاظت از خودرو توسط امواج آلتراسونيك
سيستم هاي محافظت كننده از سرقت چرخ ها و يدك كشي خودرو
سيستم هاي ايموبيلايزر
وظيفه سيستم
طراحي و نحوه عملكرد سيستم
سيستم هاي الكتريكي ايموبيلايزر
سيستم هاي ايموبيلايزر الكترونيكي
سيستم هاي فعال و غير فعال كننده
سيستم هاي تنظيم كننده ميل فرمان
طراحي سيستم
نحوه عملكرد
سيستم هاي تنظيم كننده صندلي
وظيفه سيستم
طراحي سيستم
نحوه عملكرد سيستم
سيستم الكتريكي تنظيم صندلي
تنظيمات قابل برنامه ريزي
مبدل هاي كاتاليتيكي
آلاينده هاي خروجي توسط موتور
آلاينده هاي اصلي موتور خودروها
گاز نيتروژن
دي اكسيد كربن
بخار آب
مونوكسيد كربن
هيدروكربن ها يا تركيب هاي فرار شيميايي
اكسيدهاي نيتروژن
اساس كار و نحوه عملكرد مبدل هاي كاتاليتيكي در كاهش آلاينده ها
كاتاليست كاهش دهنده آلودگي
كاتاليست اكسيد كننده
سيستم كنترل
لاستيك در خودروها
ساختمان لاستيك
مواد تشكيل دهنده لاستيك
كائوچو
دوده
سيم
محافظ هاي شيميايي
وظايف لاستيك
ساختار لاستيك
بدنه (منجيد)
ديواره
رويه يا آج لاستيك
كمربند لاستيك
طوقه لاستيك
انواع ساختار لاستيك
لاستيك هاي باياس
لاستيك هاي راديال
ويژگي هاي لاستيك هاي راديال
لاستيك هاي تيوبلس
مزايا
معايب
لاستيك هاي زاپاس
منابع و مأخذ

فهرست اشكال:
جريان روغن در سيستم ترمز ضد قفل بسته مجهز به بوستر هيدروليكي
مقاطع برش خورده سيلندر اصلي ABS مجتمع
نيروهاي ديناميكي جانبي خودرو بدون سيستم ESp
نيروهاي ديناميكي جانبي خودرو مجهز به سيستم ESp
سيستم كنترل ESp و موقعيت هاي نصب اجزا
سيستم هاي حفاظتي سرنشينان همراه با سفت كنهاي كمربندهاي ايمني و كيسه هاي هواي خودرو
سفت كن كمربند
شتاب سنج مبتني بركرنش سنج

فهرست جداول:
علامت گذاري شيشه هاي ايمني
حداكثر ميزان انحراف نور در شيشه هاي ايمني اتومبيل
شناسايي رنگ ها
كاهش نوري بعد از سايش
مقاومت در برابر رطوبت
مقاومت در برابر ضربه مدل سر
مقاومت در برابر ضربه مدل سر در حالتي كه نمونه مدل اصلي نباشد
مقاومت در برابر نفوذ گلوله
مقاومت در برابر ضربه گلوله – مخصوص شيشه هاي جلو
مقدار مجاز خورده شيشه جدا شده از ميان لايه نمونه
مقاومت در برابر ضربه – مخصوص شيشه هاي جانبي و سقفي
خردشدگي

چكيده:
با پيشرفت تكنولوژي و صنعت در زمينه هاي مختلف، شايد بتوان گفت صنعت خودرو يكي از مواردي ميباشد كه پيشرفت هاي قابل توجهي نموده است، چرا كه اين صنعت به دليل ويژگي هاي خاص و هدف آن كه در درجه اول ايجاد آسايش و ايمني براي سرنشينان خودرو است، همواره سعي نموده از جديدترين تكنولوژي ها در قسمت هاي مختلف خودرو بهره مند شود. خصوصا تكنولوژي هايي كه ضريب ايمني و آسايش سرنشينان آن را افزايش دهد.
علاوه بر اين شايد بتوان گفت علاوه بر اين به دليل تاثير پذيري قابل توجهي كه مجوع قطعات مختلف خودرو بر روي هم دارند. يكي از ويژگي هاي ديگر اين صنعت ايجاد هماهنگي بين سيستم هاي مختلف اين ميباشد. بعنوان مثال تاثير پذيري سيستم هاي كم ولتاژ الكتريكي مانند سيستم راديوي در برابر سيستم جرقه زني كه داراي ولتاژ بالاي Ac ميباشد. در اين پروژه سعي شده است در مورد سيستم هاي ايمني كه نقش اساسي در ايمني خودرو و رفاه سرنشينان ايفا ميكند بررسي گردد.

مقدمه:
متوقف ساختن خودرو مهمتر از به حركت درآوردن آن است. خودرويي كه روشن نشود، ممكن است راننده اش را خشمگين سازد ولي وقتي به راه افتاد و در مسير عبور و مرور قرار گرفت اگر ترمز آن معيوب باشد و يا راننده نتواند به درستي از ترمز آن استفاده كند، چه بسا ممكن است به صورت دام مرگ درآيد.
ترمز ناگهاني و قفل شدن چرخ ها مهم ترين خطريست كه خودرو را تهديد مينمايد. قفل شدن چرخ ها از دو جهت براي خودرو خطرناك است، اين وضعيت در بسياري از مواقع فاصله ترمز گيري را افزايش داده و مهم تر از آن كنترل فرمان چرخ ها نيز از اختيار راننده خارج ميشود، خصوصاً در جاده هاي خيس و برفي يا يخ زده كه خطر قفل شدن چرخ ها بيشتر وجود دارد، نياز به سيستمي كه بتواند ترمز چرخ ها را كنترل كرده و از ليز خوردن چرخ ها جلوگيري نمايد، بيش از پيش احساس ميشود.

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/16  ساعت: ۰۴

تعداد صفحات:129
نوع فايل:word
فهرست مطالب:
تقويت فشار گاز
بررسي فرآيند كمپرس گاز از شير ورودي تا ولو خروجي
سيستم هاي اصلي توربو كمپرسور
سيستم روغن كاري
سيستم استارت
سيستم گاز سوخت
طراحي سيستم
ساختمان سيستم كنترل
سيستم حفاظتي
سيستم متوالي
بهره برداري از واحدها
واحد استپ
انواع حسگرهاي مورد استفاده در واحد
سنسورهاي سرعت و حركت شافت
سنسورهاي لرزش
اندازه گيري و تبديل فشار گاز (عناصر برقي)
پل وستون
مبدل ترانسفورماتور تفاضلي متغير خطي
مبدل برقي فشار
سيستم ترانسفور تفاضلي متغيير خطي
مبدل پتانسيمتري
مبدل خازن متغيير خطي
سنسور فشار، نوع القاء كننده متغيير
المان هاي اندازه گيري فشار با استفاده از روش اندازه گيري طول نسبي
المان هاي الكترونيكي فشار با استفاده از روش اندازه گيري اضافه طول نسبي
اندازه گيري فشار به روش يونيزاسيون
گيج كاتد گرم
گيج كاتد سرد
مبدل پي زو الكتريكي
گيج پيراني
اندازه گيري جريان سيالات بشيوه قياسي و يا استنباطي
دستگاه هاي اندازه گيري و ثبت كننده
دستگاه هاي اندازه گيري و انتقال دهنده
وسيله و يا عنصر اوليه جريان سنج هاي وابسته به اختلاف فشار
عناصر اوليه
صفحه هاي سوراخ دار
صفحه هايي با سوراخ خارج از مركز
صفحه با سوراخ قطاعي
اريفيس، با لبه ربع دايره يا اريفيس لبه گرد
سوراخ هاي خروج گاز و يا عبور مايع
گستردگي ميدان اندازه گيري جريان سيالات
محاسن صفحه هاي سوراخ دار
معايب صفحه هاي سوراخ دار
انواع اتصالات شير اريفيس
اتصال فلنج
اتصال گوشه اي
اتصال وناكانتركتا
اتصال شعاعي
اتصال لوله
انشعابات فشار
اقسام انشعابات
انشعاب فشار از فلنج
انشعاب فشار از از وناكانتركتا
لوله و نچوري
طراحي لوله ونچوري
عملكرد شيرهاي خودكار كنترل عددي
شرح ميكروپروسسوري مدل 800و650
آشكارسازي فشار كم در خط لوله
ديده باني فشار و اندازه گيري نرخ افت فشار
ديده باني جريان با اندازه گيري اختلاف فشار دو سر شيشه نيمه بسته
سيستم هاي هشدار دهنده
ملاحظات طراحي
اعتبار
ارتباط فني
نيازهاي فني
طبقه بندي
آناليز و كاهش آلارم ها
دسته بندي آلارم ها
غلبه بر آلارم ها
درخت هاي آلارم
شناسائي و الگوسازي
احتمالات
دستگاه هاي هشدار دهنده
نشاندهنده آلارم نوع VCD
نحوه برخورد با آلارم ها
نمايشگرهاي كامپيوتري
روش هاي طراحي، مكان هاي نمايش اطلاعات
كنترل ابزار دقيق
منابع تغذيه الكتريكي براي سيستم هاي IوC
منابع تغذيه AC با فركانس 50 هرتز
ادوات ابزار دقيق با باتري پشتيبان
سيستم مرسوم براي منبع تغذيه ابزار دقيق با باطري پشتيبان
عملكرد سيستم منبع تغذيه ابزار دقيق با باطري پشتيبان
منابع تغذيه DC
استفاده از منابع تغذيه DC در تجهيزات كنترل و ابزار دقيق
باطري هاي 110و48 ولت
منابع DC ديگر
دلايل و لزوم طراحي تجهيزات الكترونيكي
تغييرات منبع تغذيه
قطعي هاي قابل تحمل
نويز ميخي شكل و حالت هاي گذرا
منابع تغذيه داخلي در تجهيزات كنترل و ابزار دقيق
نحوه آرايش عمومي
منابع تغذيه سوئيچينگ
نوع تركيبي منبع تغذيه
منابع هواي فشرده سيستم ابزار دقيق
نيازهاي اوليه
سيم كشي سيستم كنترل و ابزار دقيق، ترمينال بندي و اتصال زمين
ترمينال بندي
اتصال زمين وسايل كنترل و ابزار دقيق
احتياج به اتصال زمين
تداخل با تجهيزات كنترل و ابزار دقيق
سطوح قدرت سنسورها و مبدل ها
اثرات تداخل
كوپلاژ مغناطيسي
كوپلاژ الكترومغناطيسي
سيگنال هاي دريافت شده از دستگاه هاي ديجيتال
انواع سيگنال هاي ديجيتال
ولتاژ و جريان عملياتي
خصوصيات سيگنال هاي ورودي ديجيتال نوعي
كنترل محيطي
نيازمندي ها
طراحي تجهيزات
ساختار سيستم هاي كنترل
ساختار PLC
مزاياي PLC
سخت افزار PLC
واحد منبع تغذيه
واحد پردازش مركزي
حافظه
ترمينال ورودي
ترمينال خروجي
ماژول ارتباط پروسسوري
ماژول رابط
تصوير ورودي PII
تصوير خروجي ها PIO
Flagها و تايمرها و شمارنده ها
انبارك
گذرگاه عمومي خروجي و ورودي
اشكال مختلف نمايش برنامه
زبان برنامه نويسي هاي پي ال سي
سيكل اجراي برنامه
برنامه نويسي سازمان يافته
انواع بلوك FB
بلوك هاي سازماني دهي
دستورعمل زبان S5
به روش LAD
بررسي يك نمونه سنسور موقعيت زاويه اي مطلق
سنسورهاي مگنتورزيستيو
كاربردهاي خطي
كاربردهاي زاويه اي
واژنامه انگليسي – فارسي
منابع و ماخذ
پيوست ها

فهرست اشكال و جداول:
مبدل پتانسيمتري
سنسور فشار، هز نوع القاءكننده متغيير
پل و ستون
بلوك دياگرام مربوط به سيستم هاي Accu Tect نشان داده شده است
سيستم سلسله مراتب نمايش هاي VDU
روش طبقه بندي آلارم ها
مثال هايي از چك ليست اعمال شده بر آلارم ها
درخت تجزيه و تحليل آلارم
آرايه الگوي آلارم
مثالي از آناليز درختي آلارم از يك سيستم با داشتن قابليت رزرو. پمپ A معمولا ” جهت كار و پمپ B بعنوان رزرو انتخاب ميگردد
هشدار دهنده 6 تايي
هشدار دهنده 4 تايي با كنترل
هشدار دهنده 12 تايي
متدولوژي طراحي فورمت VCD كه نمايش دهنده ارتباط داخلي در فرآيند است
شماي اصلي منبع تغذيه با پشتيبان باطري براي تغذيه باطري تغذيه تجهيزات IوC
دامنه و مدت اعوجاج هاي منبع تغذيه AC,DC
تغييرات ولتاژ سيستم باطري DC
مشخصات نمونه منبع تغذيه سازندگان كامپيوتر
اساس منبع تغذيه خطي ولتاژ پايين با تنظيم كننده از نوع سري
اساس منبع تغذيه سوئيچينگ با تنظيم كننده ولتاژ
مقايسه منبع تغذيه خطي با سوئيچينگ
منبع تغذيه سوئيچينگ
نماي منبع تغذيه مستقيم DC دوتايي
سيستم هواي فشرده براي ادوات بادي
نمونه اي از ترمينال هاي كشويي
مثالي از واحد اتصالات سيم بندي شده با جداكننده اتصالات و نقاط آزمايش خصوصيات الكتريكي كابل هاي كنترل و ابزار دقيق
انتشار و حذف تداخل الكترو مغناطيسي
تداخل وحذف كوپلاژ مغناطيسي، به طريق زير كاهش مي يابد
كوپلاژ الكتراستاتيكي (خازني) بين كابل هاي تغذيه و كابل هاي سيگنال
اصول فيلتر سازي الكتروستاتيكي بمنظور كاهش تداخل ناشي از كوپلاژ خازني طراحي تقويت كننده ها براي حذف تداخل
نوع تداخل سري و مشترك و راه هاي كاهش اثرات آن ها
رابطه بين ولتاژ منبع تغذيه مورد نياز و حداكثر مقاومت بار
كلاس هاي محيط هاي مربوط به درجه حرارت و رطوبت
معرفي حفاظت با توجه به محل نصب
نحوه ارتباط cup با ساير قسمت هاي plc

 

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/15  ساعت: ۱۴

تعداد صفحات:99
نوع فايل:word
فهرست مطالب:
فصل 1
فناوري نانو چيست؟
مقدمه
انواع رويكردهاي نانو تكنولوژي
فناوري نانو در آينده نه چندان دور
چقدر كوچك است؟ نانو
نانو تكنولوژي در ايران
چشم انداز علم نانو تكنولوژي
تاريخچه نانو تكنولوژي
فصل 2
كاربردهاي نانو تكنولوژي
نانوتكنولوژي انقلاب صنعتي آينده
كاربردهاي نانو تكنولوژي
پزشكي و بدن انسان
دوام‌ پذيري منابع
هوا و فضا
امنيت ملّي
كاربرد نانو تكنولوژي در صنعت الكترونيك
ذخيره‌سازي اطلاعات در مقياس فوق‌‌العاده كوچك
فناوري نانو و شيمي
فناوري نانو و پزشكي
فناوري نانو و حمل و نقل
علم نانو يك تحول بزرگ در مقياس بسيار كوچك
مواد نانو
آلودگي
نانو تكنولوژي و افزايش بازده موتورها
اشاره‌اي به كاربردهاي فناوري نانو در صنعت خودرو
نانو تكنولوژي و صنعت نفت
سنسورهاي هيدروژن خود تميز كننده
سنسورهاي جديد در خدمت بهبود استخراج نفت
نانو تكنولوژي در صنايع نيمه‌ هادي
حافظه غير فرار
الكترونيك پليمري
نانو حسگر
آينده زير سايه نانو
چند محصول تجارى شده با استفاده از فناورى نانو
پارچه هاى ضد چروك و ضد لكه
محافظت پوست، با قابليت نفوذ عميق
عينك هاى آفتابي با كيفيت بالا
نانو جوراب
كرم هاى ضدآفتاب
فشرده‌ كردن نانو پودرها در دماي پايين
كاربرد نانو تكنولوژي در پزشكي
نانو پوسته
فصل 3
تحولات نانو تكنولوژي
ايجاد رشته‌هاي نانو لوله‌اي
شناسايي طيف نوري نانو لوله‌هاي كربني
يكسو سازهاي كوانتومي
آهنرباهاي دو فازي جديد
رشد مصنوعي رگ هاي خوني در دانشگاه ويرجينيا
كشف روشي جديد برا‌ي ساماندهي نانو ذرات
آينده سيستم‌هاي نانوالكترو مكانيكي
يك سيستم الكترومكانيكي چيست؟
فايده نانو ماشين‌ها
چالش هاي NEMS
نقش فيزيك سطح
نانوكاتاليست و آينده سوخت هاي فسيلي
پيشرفت‎هاي نانوكاتاليست
ده روند برتر نانو تكنولوژي در قرن بيست و يكم
استفاده از نانو ذرات در تبديل انرژي خورشيدي
كوچكترين منبع نور الكترولومين سنس
تبديل الكل به نانوفيبرهاي كربني
باكي فروسن ها
ذخيره‎سازي نانو ذره‎اي
توليــد مـــواد هوشمـنـد
شكستن محدوديت هاي ذخيره‎سازي
توليد مواد دلخواه به تقليد از عنكبوت
وابستگي هدايت نوري نانو ذرات به اندازه
آنتروپي در مقياس نانومتري
اختراع آشكار ساز نانولوله كربني مادون قرمز
اختراع افزايش انتقال حرارت با نانو پودر
اسمبلي مولكولي Molecular Assembly چيست؟
چرا نوآفريني مصنوعي مهم است؟
سطح تماس زياد الكترود – الكتروليت
مسير انتقال كوتاه
الكترودهاي نانو ساختار براي عملكرد پايدار چرخه
فصل 4
نانو تكنولوژي و جهان امروز
نانو تكنولوژي از ديدگاه جامعه شناختي
نانو تكنولوژي به زبان ساده
سه فناوري تسخير كننده
ابزارهاي جديد براي كارهاي ظريف
وضعيت جهاني
و اما به طور كلي و خلاصه اين كه
نانو تكنولوژي چست؟
چرا Nano ؟
نانو تكنولوژي از كجا آمده است؟
چه انتظاري بايد از نانو تكنولوژي داشت
آيا نانو تكنولوژي واقعي است؟
آيا كشورهاي توسعه نيافته بايستي به اين موضوع فكر كنند ؟
آيا نانو تكنولوژي خيالي تر از علم است؟
نتيجه گيري
منابع

مقدمه:
فناوري نانو واژه‌اي است كلي كه به تمام فناوري هاي پيشرفته در عرصه كار با مقياس نانو اطلاق ميشود.
معمولاً منظور از مقياس نانو ابعادي در حدود 1 نانو متر تا 100 نانو متر ميباشد. (1 نانومتر يك ميليارديم متر است).
اولين جرقه فناوري نانو (البته در آن زمان هنوز به اين نام شناخته نشده بود) در سال 1959 زده شد. در اين سال ريچارد فاينمن طي يك سخنراني با عنوان « فضاي زيادي در سطوح پايين وجود دارد» ايده فناوري نانو را مطرح ساخت. وي اين نظريه را ارائه داد كه در آينده‌اي نزديك ميتوانيم مولكول‌ها و اتم‌ها را بصورت مسقيم دستكاري كنيم.
واژه فناوري نانو اولين بار توسط نوريوتاينگوچي استاد دانشگاه علوم توكيو در سال 1974 بر زبان ها جاري شد.
او اين واژه را براي توصيف ساخت مواد (وسائل) دقيقي كه تلورانس ابعادي آن ها در حد نانومتر ميباشد، به كار برد. در سال 1986 اين واژه توسط كي اريك دركسلر در كتابي تحت عنوان : «موتور آفرينش: آغاز دوران فناوري نانو» بازآفريني و تعريف مجدد شد. وي اين واژه را به شكل عميق‌تري در رساله دكتراي خود مورد بررسي قرار داده و بعدها آن را در كتابي تحت عنوان « نانو سيستم‌ها ماشين‌هاي مولكولي چگونگي ساخت و محاسبات آن ها» توسعه داد.
هدف فناوري نانو يا نانو تكنولوژي توليد مولكولي يا ساخت اتم به اتم و مولكول به مولكول مواد و ماشين‌ها توسط بازوهاي روبات برنامه‌ريزي شده در مقياس نانومتريك است (نانومتر يك ميلياردم متر است يعني پهناي معادل با 3 تا 4 اتم).
رايانه‌ها اطلاعات را تقريباً بدون صرف هيچ هزينه‌اي باز توليد ميكنند. اقداماتي در دست اجراست تا دستگاه هايي ساخته شوند كه تقريباً بدون هزينه – شبيه عمل بيت ها در رايانه – اتم ها را به صورت مجزا به هم اضافه كنند (كنار هم قرار دهند). اين امر ساختن خودكار فراورده‌ها را بدون نيروي كار سنتي همانند عمل كپي در ماشين هاي زيراكس ميسر مي‌كند. صنعت الكترونيك با روند كوچك‌سازي احياء مي‌گردد و كار در ابعاد كوچكتر منجر به ساخت ابزاري مي‌شود كه قادر به دستكاري اتم‌هاي منفرد مثل پروتئين‌ها در سيب‌زميني و همانندسازي اتم‌هاي خاك، هوا و آب از خودشان مي‌گردد.
نانوتكنولوژي توليد كارآمد مواد و دستگاه ها و سيستم ها با كنترل ماده در مقياس طولي نانومتر و بهره برداري از خواص و پديده‌هاي نو ظهوري است كه در مقياس نانو توسعه يافته‌اند .

 

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/15  ساعت: ۱۴

تعداد صفحات:130
نوع فايل:word
فهرست مطالب:
تاريخچه و مقدمه
تاريخچه ماكاروني در ايران
فصل اول
غلات
گندم و ويژگي هاي آرد و ماكارني
گندم
خصوصيات گندم
ميزان پروتئين
خاكستر
رطوبت
كيفيت پروتئين
ميزان چربي
نشاسته
اندازه ذرات
تجانس ذرات
اختلاف واريته ها
ويژگي هاي عمومي
بو و طعم
رنگ
آفت و آفت زدگي
آلودگي هاي ميكروبي
ميزان فلزات سنگين
باقيمانده سموم
مواد خارجي
ذرات شن
ويژگي هاي اختصاصي
خصوصيات كيفي آردهاي مصرفي در داخل براي توليد ماكاروني
انواع ماكاروني
ابعاد
انواع فرآورده هاي توپر
ورميشل
اسپاگتي
نودل اكسترود شده
انواع مخصوص (ماكاروني هاي فرمي)
انواع فرآورده هاي توخالي
ماكاروني
الباو (ماكاروني زانوئي شكل)
ساير فرآورده ها
فرآورده هاي غلطكي
فرآورده هاي غلطكي نقش دار
راويولي
رشته آش و پلو
ارزش غذايي فرآورده هاي ماكاروني
كالري
پروتئين ها (اسيد آمينه)
ويتامين ها و مواد معدني
موقعيت و محل كارخانه
فصل دوم
مواد اوليه مورد استفاده در توليد ماكاروني
سمولينا
ميزان رطوبت مناسب سمولينا
ميزان خاكستر در سمولينا
ميزان سبوس در سمولينا
گلوتن موجود در سمولينا
آب
تخم مرغ
مواد افزودني مجاز
نمك
ال سيتئين هيدروكلرايد
منوودي گليسريد
بتاكاروتن
ويتامين C
پودر اسفناج يا آب اسفناج
ويتامين هاي گروه B
غني كردن ماكاروني
فصل سوم
ساخت ماكاروني
روش هاي ساخت انواع ماكاروني به تفصيل
روش غير پيوسته
روش پيوسته يا مداوم Countinious Process
انتقال دهنده ها
انتقال دهنده افقي
انتقال دهنده هاي عمودي
انتقال دهنده بادي
فصل چهارم
روش هاي خشك كردن
يك روش ديگر خشك كردن
مرحله خشك كردن سريع
مرحله كوتاه مياني
مرحله نهايي
خشك كردن اوليه
اهداف خشك كردن اوليه
خشك كردن مياني
خشك كردن نهايي
روش طبق هاي نوري
استوانه هاي چرخان
تونل هاي خشك كن
خشك كردن محصولات بلند (رشته اي)
يك دياگرام (طرح) خشك كردن موفقيت آميز
منحني خشك كردن
فصل پنجم
گرمخانه هاي ماكاروني
سيستم گرمايش
فن ها
سيستم مكش رطوبت
سنسورها يا حس كننده ها
نور
رادياتورها
فصل ششم
بسته بندي و برش
بسته بندي توسط كارگر
بسته بندي اتوماتيك
ويژگي بسته بندي مطابق استاندارد
فصل هفتم
نگهداري و انبار كردن محصول
فصل هشتم
بهداشت كارخانه
رعايت بهداشت توسط كارگران خط توليد
استفاده از عينك
استفاده از گوشي
استفاده از دستكش
استفاده از روپوش
استفاده از چكمه هاي مخصوص
رعايت بهداشت توسط كارگران بخش بسته بندي و انبار
نظافت قسمت هاي مختلف كارخانه
انبار آرد
خط توليد
گرمخانه ها
انبار نگهداري محصول
آزمايشگاه كنترل كيفي
فصل نهم
آزمايشگاه – كنترل كيفي
آزمايشات شيميايي ماكاروني
تعيين PH ماكاروني
آزمايش پخت
آزمايش جهت تعيين وزن مواد جامد در آب
آزمايش رطوبت
طرز تهيه محيط هاي كشت
تهيه محيط كشت پليت كانت آكار
پليت
تهيه محيط كشت فنل رد آكار
دستور تهيه سوسپانسيون زرده تخم مرغ
تهيه كشت محيط سوبرو دكستروز آكار
طريقه كشت و شمارش آزمون هاي ميكروبي
طرز عمل كشت
طريقه كشت براي تشخيص با سيلوس يرئوس
طريقه كشت كپك
آزمون هاي كنترل كيفي مواد اوليه
الك كردن سمولينا
آزمون آلودگي به بقاياي حشرات
اندازه ذرات سمولينا
خاكستر
آزمون فعاليت آنزيم ليپواكسيداز
ساير آزمون ها
كنترل كيفيت فرآورده نهايي
ترك خودرگي رشته هاي ماكاروني طي مرحله خشك كردن
كنترل PH
نشاسته در آب پخت
آزمون قوام رشته ها Bitetest
انحنا پذيري يا مقاومت به خمش
وجود لك
رنگ
چسبندگي رشته ها
افزايش وزن حين پخت
ساير آزمون ها
Grit test
ارزيابي حسي محصول نهايي
فصل دهم
استاندار (213) ويژگي هاي ماكاروني
هدف
دامن كاربرد
تعاريف و اصطلاحات
سمولينا
ماكاروني
اسپاگتي
ورميشل
رطوبت
پروتئين
خاكستر
خاكستر غير محلول در اسيد
ذرات تيره
فعاليت ليپواكسيداز
وزن ماكاروني پخته شده
مقدار مواد جدا شده
ويژگي ها
مواد اوليه اصلي
سمولينا
ويژگي هاي عمومي
ويژگي هاي عمومي ماكاروني
بسته بندي و نشانه گذاري
نمونه برداري
روش هاي آزمون
وسائل مورد نياز
معرف هاي مورد نياز
اندازه گيري ذرات تيره
تعيين كيفيت پخت ماكاروني
روش كار
ميزان وزن ماكاروني پخته شده
فصل يازدهم
بحث و نتيجه گيري
پيشنهادها
بالا بردن كيفيت
بالا بردن كيفيت بسته بندي
كاهش قيمت فروش
تبليغات و بازاريابي
مشكلات موجود بر سر راه توليد آرد با كيفيت مطلوب
منابع و ماخذ

تاريخچه و مقدمه:
بر طبق گواهي افسانه هاي قديمي براي اولين بار ماركوپولو (Marco polo) در قرن 13 پس از بازگشت از چين غذايي آردي شبيه به ماكاروني را به دربار هديه كرد. به طور كلي براي مردم آن زمان علي الخصوص دريانوردان حمل و نگهداري آذوقه سفر امري مهم تلقي ميشد چرا كه گاه سفر چندين ماه به طول مي انجاميد و آن ها نياز به غذايي داشتند كه فاسد و خراب نشود. همچنين مرغوبيت و ارزش غذايي خود را حفظ كند. ظاهر همه اين ويژگي ها در ماكاروني وجود دارد اين محصول در طي نگهداري به مدت طولاني طعم مزه و كيفيت خود را حفظ مينمايد.
هر چند توليد ماكاروني از يك ريشه تاريخي منشا ميگيرد اما بطور وسيع در قرن بيستم با تغييرات اساسي وارد بازار مصرف عمومي و تجارت گرديد در اوليل اين قرن و قبل از صنعتي شدن توليدات تهيه و توليد اين محصول به صورت خانگي و يا به مقادير كم، در كارگاه هاي كوچك انجام ميشود و در مجموع مقدار قابل توجهي را در بر نمي گرفت. طبق بررسي، از سال 1850 ميلادي توليد به صورت ماشيني و صنعتي با ابداع و اختراع ماشين هاي پرس كننده خمير شروع شد مجموعه اي از اين ماشين آلات متشكل از يك سيستم ورز دهنده خمير (kneading device) با پيستون و سيلندر مربوطه و يك صفحه مشبك كه منتهي از يك مارپيچ بودند كار توليد را در مقياس صنعتي شروع كردند. در آغاز قرن بيستم لوازم موجود براي ساخت ماكاروني شامل مخلوط كن و پرس و قفسه هاي مخصوص خشك كردن ساخته شدند در سال 1934 يك شركت فرانسوي كه قبلا اكسترودرهاي ساده ميساخت سيستم پيوسته را جايگزين نمود و در همان سال ها سوئيسي ها پرس هاي مداوم اتوماتيك را مورد بهره برداري قرار دادند امروزه اين ماشين آلات به سيستم هاي توليد پيوسته تبديل شده اند و ميتوانند با ظرفيت هاي بسيار بالا كار كنند استفاده نيروي انساني براي اين سيستم ها نيز بسيار اندك است توليد در اين سيستم ها نيازمند دقت فراوان و ماده اوليه همگون ميباشد.

تاريخچه ماكاروني در ايران:
در ايران در سال 1315 اولين كارخانه ماكاروني بنام نوبل در تهران راه اندازي شد كه عمده توليدات آن براي سفارتخانه ها و خارجيان مقيم ايران مصرف ميگرديد. سپس كارگاهي در خيابان طالقاني مقابل سفارت سابق آمريكا احداث شد اين واحد داراي يك پرس يك سيلندري بود سيستم آرد و الك در طبقه پايين تر قرار داشت آرد توسط مارپيچ به مخلوط كن و رشته ساز منتقل ميشد ماكاروني ها پس از برش در روي ني هاي خيزران آويخته ميشدند و سپس به گرمخانه انتقال مي يافتند عمده توليد اين واحد نيز براي خارجيان مقيم تهران اختصاص داشت بقاياي اين كارگاه تا سال 1373 در محل باقي بود در حال حاضر حدود 250 واحد فعال ماكاروني در ايران داير است ظرفيت كل اين واحدها حدود 340 هزارتن در سال ميباشد حدود يك سوم اين و احدها در استان تهران مستقرند.

 

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/15  ساعت: ۱۰

تعداد صفحات:16
نوع فايل:word
فهرست مطالب:
چكيده
كلمات كليدي
فهرست علائم
مقدمه
نور
رنگ
رنگ اشياء
رنگ فيلترهاي نور
سنسورهاي RGB
فيلترهاي Optic
تراشه هاي مخصوص
استفاده از پردازش تصوير براي تشخيص رنگ اجسام
استفاده مستقيم از RGB
سيستم HIS
روشهاي HSY, YUV
رفع خطاي تشخيص رنگ
نتيجه گيري
مراجع

فهرست اشكال:
طول موج (نانومتر)
(الف) تركيب رنگ ها، (ب) مثلث رنگ
(الف)ديود نوري (ب)فتوترانزيستور (ج)سلول نوري

مقدمه:
تشخيص رنگ در صنعت از اهميت فو ق العاده اي برخوردار است. تشخيص رنگ در صنايع مواد غذايي، به خصوص در بسته بندي چاي، صنعت چاپ، كارخانه هاي پارچه بافي و رنگ رزي و لوازم آرايشي از موارد مهم و كاربردي براي توليد و كنترل كيفيت ميباشد. به همين دليل روش ها و سنسورهاي مختلفي براي اين كار ايجاد گرديده است. ما ابتدا قبل از آشنايي با اين روش ها و طرز كار سنسورها احتياج به آشنايي با ماهيت نور و رنگ و خواص آن ميباشد كه در اين پروژه به توضيح كلي آن ميپردازيم.

 

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/15  ساعت: ۰۸

تعداد صفحات:78
نوع فايل:word
فهرست مطالب:
مقدمه
فصل يكم : Grid Computing چيست ؟
فصل دوم : مزيت هاي Grid Computing
استفاده موثر از منابع
قابليت محاسبه موازي
منابع مجازي و سازمان هاي مجازي
دسترسي به منابع اضافه
متعادل سازي استفاده از منابع
قابليت اطمينان
مديريت
فصل سوم : مفاهيم و معماري
سازمان هاي مجازي و Grid
چالش هاي تكنيكي در به اشتراك گذاشتن
سير تكامل تكنولوژي Grid
معماري Gri
Fabric : رابط هايي براي كنترل هاي محلي
Connectivity : برقراري ارتباط ساده و امن
Resource : به اشتراك گذاشتن يك منبع
Collective : هماهنگي چندين منبع
Application
پياده سازي معماري Grid
Globus Toolkit v2.0
Fabric
Connectivity
Resource
Collective
Open Grid Services Architecture
فصل چهارم : مدلي براي برنامه نويسي
تعريف محيط و هدف
المان ها
كار
قسمت كردن
ريزكار
منبع محاسباتي
زمانبند
ذخيره كننده
مدل برنامه نويسي، به صورت شبه كد
طرف منابع محاسباتي
طرف زمانبند
تقسيم كننده
فلوچارت و كمي از جزئيات برنامه نويسي
فلوچارت طرف زمانبند
فلوچارت طرف منبع محاسباتي
روشي براي تقسيم كردن در مسائل Back-track
ساختمان داده گره
درخت خاكستري
قطع كردن درخت
زمانبندي
نكات تكميلي

فهرست شكل ها:
مراحل مجازي سازي
Grid منبع نامتجانس و از نظر جغرافيايي از هم جدا را مجازي سازي مي كند
كارها به جاهايي كه بار كمتري دارند برده مي شوند
پيكر بندي Grid در مواقع بحراني
مديران مي توانند سياست هاي خاصي را تنظيم كنند
يك سازمان مجازي
سير تكامل تكنولوژي Grid
لايه هاي معماري Grid
مثالي از مكانيزم Globus Toolkit
المان هاي سيستم
قسمت هاي مختلف سيستم
قسمتي از فلوچارت طرف زمانبند
فلوچارت طرف زمانبند
طرف منبع محاسباتي
درخت متقارن و منابع متقارن
درخت متقارن و منابع نامتقارن
درخت نامتقارن و منابع متقارن
درخت نامتقارن و منابع نامتقارن
مراحل زمانبندي
مراحل زمانبندي
مراجع و منابع

چكيده:
هدف Grid Computing به اشتراك گذاري منابع در يك محيط پويا و احتمالاً ناهمگن است. اين منابع با سياست هاي مختلف در دسترس هستند. اين به اشتراك گذاري عمدتاً براي اهداف محاسباتي براي مقاصد علمي است اما در موارد اقتصادي نيز كاربرد دارد. اين منابع مي توانند منابع گوناگوني از جمله CPU، هارد ديسك، نرم افزار و سنسورها باشند.
در اين گفتار مفاهيم، مزيت ها و كاربردهاي Grid را بررسي مي كنيم، يك معماري براي Grid معرفي مي كنيم و مدل OGSA را بررسي مي كنيم. يك مدل كلي براي برنامه نويسي تحت Grid بيان مي كنيم و جزئيات اين مدل را براي مسائل Back-track بررسي مي كنيم و درخت خاكستري را معرفي مي كنيم. در نهايت مسئله N – وزير را در محيط Grid حل مي كنيم و براي نشان دادن قدرت محاسبه موازي، نتايج عمل ضرب ماتريس با استفاده از ده ماشين را بيان مي كنيم.

 

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/15  ساعت: ۰۶

تعداد صفحات:74
نوع فايل:word
فهرست مطالب:
چكيده
مقدمه
فصل اول : كنترل الكترونيكي ديزل
نگاه اجمالي به سيستم
الزامات
بخش هاي سيستم
پردازنده اطلاعات
حسگرها و نشانگرهاي مقدار خواسته راننده
عملگرها
فصل دوم : واحد كنترل الكترونيكي
وضعيت عملكرد
طرح و ساختار
پردازش داده ها
سيگنال‌هاي ورودي
سيگنال‌هاي ورودي آنالوگ
سيگنال‌هاي ورودي ديجيتال
سيگنال‌هاي ورودي به شكل پالس
آماده‌سازي سيگنال
پردازش سيگنال
حافظه برنامه
حافظه داده‌ها
ASIC
مدول كنترل
سيگنال‌هاي خروجي
سيگنال‌هاي كليدزني
سيگنال‌هاي PWM
ارتباطات داخل پردازنده
سيستم‌ عيب‌ يابي
كنترل سنسورها
شناخت عيب
برطرف كردن عيب
عملكرد EDC
تنظيم شرايط كاركرد
مقدار سوخت در حالت استارت
شرايط حركت خودرو
تنظيم دور آرام
كنترل كاركرد آرام
كنترل سرعت حركت خودرو
تنظيم مقدار تزريق
تصحيح ارتفاع
خاموشي سيلندر
خاموش كردن موتور
تبادل اطلاعات
مداخله خارجي در تنظيم مقدار سوخت تزريقي
سيستم ضد سرقت الكترونيكي
سيستم تهويه
پردازنده كنترل شمع پيش گرمكن
انتقال اطلاعات به سيستم هاي ديگر
نگاهي به سيستم
انتقال سنتي اطلاعات
انتقال داده‌ها به صورت CAN
حوزه‌هاي كاربرد
استفاده از مولتي پلكس
كاربرد در ارتباط بيسيم و متحرك
كاربردهاي عيب‌ يابي
كاربرد زمان واقعي يا همزمان (Real time)
جفت كردن پردازنده
آدرس‌دهي مربوط به محتوا
اولويت‌ بندي
توزيع گذرگاه بين پردازنده‌ها
قالب پيام
ابتداي فريم
فيلد تعيين اولويت
فيلد كنترل
فيلد داده يا اطلاعات
فيلد CRC
فيلد ACK
پايان فريم
عيب‌ يابي يكپارچه
استاندارد سازي
فصل سوم : حسگرها (Sensors)
كاربردهاي خودرويي
حسگرهاي EDC
حسگرهاي مجتمع
حسگرهاي دما
كاربرد
حسگر دماي موتور
حسگر دماي هوا
حسگر دماي روغن موتور
حسگر دماي سوخت
ساختار و عملكرد
حسگرهاي فشار از نوع ميكرو مكانيكي
كاربرد
حسگر فشار هواي ورودي و يا فشار مانيفولد هوا
حسگر فشار محيط
حسگر فشار روغن و سوخت موتور
ساختار
عملكرد
حسگرهاي زاويه و دور موتور از نوع القايي
كاربرد
ساختار و نحوه كار
حسگر مرحله از نوع هال HALL
كاربرد
ساختار و طرز كار
اصل ديفرانسيلي (تفاضلي) هال
حسگر ميله‌اي هال
خروجي ديجيتال
حسگرهاي پدال گاز
كاربرد
ساختار و نحوه كاركرد
سوييچ دور آرام و افت دور
پتانسيومتر دوم
اندازه گير جرم هوا از نوع لايه داغ (فيلم داغ) HFM5
كاربرد
ساختار
طرز كار
فصل چهارم : عملگرها (Actuators)
عملگرهاي الكترونيوماتيك (برقي – بادي)
عملگر تقويت فشار
شير EGR
دريچه گاز
دريچه مانيفولد ورودي
تغيير دهنده چرخش هوا
سيستم هاي ترمز
ترمز موتور
ترمز موتور اضافه
ريتاردر (Retarder)
ريتاردر (كاهنده) هيدرو ديناميك
ريتاردر الكترو ديناميك
كنترل پروانه FAN
سيستم هاي كمك استارت
پيش گرمايش هواي مكشي
شمع شعله‌اي
گرمايش الكتريكي
شمع پيش گرمكن
واحد كنترل برافروختن شمع
ترتيب عملكردها
نتيجه گيري نهايي
پيشنهادها
فهرست منابع و مراجع
واژه نامه انگليسي به فارسي

فهرست اشكال:
اجزاي اصلي EDC
نگاه اجمالي اجزاي EDC براي پمپ هاي تزريق سوخت رديفي (خطي)
نگاه اجمالي اجزاي EDC براي پمپ هاي توزيع كننده VE..EDC مارپيچ (هليكس) و كنترل دريچه (مجرا)
نگاه اجمالي اجزاي EDC براي پمپ هاي توزيع كننده كنترل شير برقي VE..MV,VR
نگاه اجمالي اجزاي EDC براي سيستم هاي يونيت انژكتور در خودروهاي سواري
نگاه اجمالي اجزاي EDC براي سيستم هاي يونيت انژكتور (UIS) و سيستم هاي يونيت پمپ (UPS) در وسايل نقليه تجاري
نگاه اجمالي اجزاي EDC براي سيستم هاي ريل مشترك (CRS) در خودروهاي سواري
نگاه اجمالي اجزاي EDC براي سيستم هاي ريل مشترك (CRS) در وسايل نقليه تجاري
طرحي از يك ECU براي سيستم ريل مشترك با انژكتور درون پيزو
پردازش سيگنال در ECU
سيگنال هاي PWM
محاسبه مراحل تزريق سوخت در ECU
نمونه اي از خفه كن موج فعال (ARD)
نمونه اي از كنترل مداوم آرام (LRR)
وضعيت معمولي انتقال اطلاعات
وضعيت گذرگاه خطي اطلاعات
آدرس دهي و فيلتر كردن پيام (بررسي دريافت)
داوري رقم دودئي به وسيله رقم دودئي
حسگر دماي خنك كن
حسگر دما NTC : منحني مشخصه
المان محاسبه حسگر فشار با خلاء مرجع آن سمت اجزا
المان محاسبه حسگر فشار با درپوش و خلاء مرجع آن سمت اجزا
المان محاسبه حسگر فشار با درپوش و خلاء مرجع آن سمت اجزا
حسگر فشار ميكرومكانيكي با خلاء مرجع آن سمت اجزا
حسگر فشار تقويت ميكرومكانيكي (نمونه اي از منحني)
حسگر القايي دور
سيگنال از حسگر القايي دور
المان هال (پره انتقال اثر هال)
حسگر ميله اي اثر هال
منحني مشخصه حسگر پدال گاز با پتانسيومتر اضافه
انواع حسگر پدال گاز
اندازه گير جرم هوا لايه داغ HFM5 (مدار)
اندازه گير جرم هوا لايه داغ (ولتاژ خروجي از عملكرد گذشتن جريان جرم محدود هوا)
لايه داغ اندازه گير جرم هوا: قاعده سنجش
توربو شارژر با دريچه اتلاف
توربين هندسه متغير، توربو شارژر VTG
روش عملكرد توربو شارژر VST
پوشش المان شمع گرمكن نوع GSK2، (نوع داخل محفظه احتراق)
دماهاي سيستم هاي پيش گرمكن معمولي شمع هاي گرمكن در يك زمان عملكرد
نصب المان شمع گرمكن نوع داخل منيفولد ورودي

چكيده:
با پيشرفت تكنولوژي و علوم در ابعاد گوناگون به خصوص الكترونيك و نفوذ آن به علوم ديگر مانند مكانيك به عنوان كنترلر؛ كه با دقت، سرعت، صرف هزينه كم و بهره وري بالا، بهترين راندمان را ارائه ميدهد، موتورهاي ديزل نيز از اين قاعده مستثني نيستند.
با ورود الكترونيك به دنياي ديزل با بالا رفتن دقت و سرعت كنترل؛ مصرف سوخت كم، شتاب گيري بالا، صداي كم، آلودگي پائين و به طور كلي راندمان موتور، افزايش مي يابد.
از آن جا كه اين سيستم ها انحصاري ميباشد مي بايست براي آشنايي با آن ها به اطلاعات شركت سازنده متكي بود. البته براي جامع بودن اين اطلاعات ميتوان اطلاعات چند شركت را جمع آوري و مقايسه نمود.
براي عيب يابي و تعميرات اين گونه سيستم ها نياز به عيب ياب هاي الكترونيكي ميباشد. با اين وجود بايد با نحوه عملكرد و ساختار اين سيستم ها آشنايي كامل داشت.
در اين پروژه با برخي از انواع اين سيستم ها آشنا مي شويم.

 

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/15  ساعت: ۰۵

تعداد صفحات:93
نوع فايل:word
فهرست مطالب:
چكيده
مقدمه
مقدمه‌اي بر روش هاي شناسايي خودرو
شناسايي ماشين در عكس‌هاي هوايي
Ralated work
our apprack
دياگرام سيستم تشخيص
تست‌ روانشناختي (A Psychophysical test)
Feature Extraction (استخراج ويژگي)
clustering of road direction
ويژگي‌هاي به كار برده شده براي رديابي
model – based Feature Prediction :
Multi –feature integration
پارامتريزه كردن خصوصيات
يكپارچگي
پارامتر‌هاي BN handcraft
يادگيري پارامتر‌ها
شناسايي و پس پردازش
شناسايي
پس پردازش (Post – Processsing)
نتايج و بحث (Result & Discussion)
نتايج
زمان محاسبات
نتايج و آينده كار
Compont – based cardetection in street Scencee Images
Object detaction frome work
Experiment (آزمايش)
Street Scenes Subset database
keypoint – based car detector
Compaison to global SVMs
car detection
تركيب اجزا Component Combination
شناساگر اجزاComponent detector
Component Combination classifie
car detection
نتايج Conclusion
Comporison with Prior work in Car detection
مقايسه با كارهاي اوليه در شناسايي خودرو
Reference:
استفاده‌ي ICM
Tests of the ICM on imagery (معيارهاي ICM روي تصويرسازي)
شناسايي ماشين
Refrence
A M onocular Solution to vision – based Acc in road vehicles
توصيف سيستم پيگيري خط
شناخت و رديابي ماشين
سيستم حمل و نقل هوشمند
تاريخچه ITS
تكنولوژي هاي سيستم‌هاي حمل و نقل هوشمند
Wireless communications
Longer range
Computational technologies
Floating Car Data
Sensing technologies
سنسور
Distance
Inductive loop detection
Video vehicle detection
Intelligent transportation applications
مشكلات روش ها
مراجع

چكيده:
در اين پايان نامه تحقيقاتي چندين روش همراه با بعضي معايب و محاسن آن مورد بررسي واقع شده است از جمله: شناسايي خودرو در تصاوير هوايي شناسايي خودرو مبتني بر جزئيات در تصاوير خياباني، شناسايي خودرو در الگوريتم Icm و در نهايت Vision bqased ACC در پايان پروژه توضيحاتي در باب سيستم حمل و نقل هوشمند و چگونگي و كاربرد شناسايي خودرو ارائه شده است.
حال به صورت كلي به بيان برخي از اين يافته‌ها مي‌پردازيم. در شناسايي خودرو در عكس هاي هوايي، يك سيستم براي شناسايي خودروها در تصاوير هوايي در طول جاده عرضه ميشود و شروع كار از تست‌هاي روانشناسي مي‌باشد تا ويژگي‌هاي مهمي براي شناسايي (همانند مرز بدنه ماشين، مرز جلوي شيشه جلو و…) پيدا شود. كه در ساختار Baysian نشان داده شده است.
شناسايي وسيله نقليه به وسيله VIEW POINT و RESOLUTION انجام ميشود. و وسيله نقليه بعنوان مستطيل مدل ميشود از ميانگين gray level و سطح هاي شيب دار دروني، بيروني و مياني وسايل براي تشخيص استفاده ميشود.
در يك تشخيص دوربين ايستا، اشياي در حال حركت به وسيله back ground subtraction شناسايي ميشود.
در دياگرام سيستم تشخيص، ماشين هندسي و دوربين تا وقتي كه توزيع كننده ويژگي‌ها بيشتر تعليم داده شوند بدون يادگيري مدل ميشود. جهت جاده‌ها به وسيله لاين‌هاي انبوه در تصوير تخمين زده ميشود و از چهار قسمت از جلوي شيشه جلويي دو قسمت از مرز بيروني سايه و شدت منطقه سايه هنگامي كه وجود دارد بعنوان ويژگي استفاده ميشود. در تست روانشناختي يك مجموعه داده متفاوت با ماشين هاي در شرايط آشكار سازي و تراكم مختلف در محيط متفاوت استفاده ميشود.

 

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/15  ساعت: ۰۵

تعداد صفحات:98
نوع فايل:word
فهرست مطالب:
فصل اول
مقدمه
ماهيت امواج صوتي و مافوق صوت
كاربردهاي امواج مافوق صوت
فصل دوم – بلوك دياگرام كلي پروژه
مدار فرستنده
مدار گيرنده
بخش كنترل
سيستم نمايشگر
فصل سوم – سنسورهاي مافوق صوت
اثر پيزوالكتريك
ترانسديوسرهاي مافوق صوت و مشخصات 400ST/R160
فصل چهارم – فرستنده مافوق صوت
نوسان ساز
مدار بافر
مدار كليد زني (سوئيچينگ ترانزيستوري)
رله آنالوگ – ديجيتال
طراحي مدار بهينه براي فرستنده
فصل پنجم – گيرنده مافوق صوت
تقويت كننده طبقه اول
فيلتر(ميانگذر) با فركانس مركزي 40KHZ
تقويت كننده طبقه دوم
مدار توليد پالس منطقي (اشميت تريگر)
فصل ششم – بخش كنترل
خصوصيات ميكروكنترلر ATMEGA32
ورودي – خروجي
منابع كلاك
بررسي پورت هاي ميكروكنترلر ATMEGA32
برنامه نويسي ميكروكنترلر ATMEGA32
فصل هفتم – سيستم نمايشگر
معرفي پين هاي LCD گرافيكي
فصل هشتم – طراحي سيستم هاي نمايشگر فضاي عقب خودرو
نمايشگر فضاي عقب خودرو
برنامه نهايي ميكروكنترلر
فصل نهم – نتيجه گيري و پيشنهادات
نتيجه گيري و پيشنهادات
منابع و مآخذ

چكيده:
در اين پروژه با استفاده از 4 سنسور مافوق صوت به شبيه سازي موانع عقب خودرو ميپردازيم اين سيستم در خودروهاي سنگين كه امكان ديدن فضاي پشت اتومبيل در آيينه عقب ندارند كاربرد مناسبي خواهد داشت چگونگي كاركرد اين پروژه به اين صورت است كه موج مافوق صوت به وسيله فرستنده ارسال ميگردد همزمان يك تاير در ميكرو راه اندازي ميشود زماني كه موج ارسالي به مانع برخورد كرد و در گيرنده دريافت شد ميكرو تايمر را متوقف ميكند زمان اندازه گيري شده توسط تايمر عبارت است از زمان رفت و برگشت موج كه نصب اين زمان، زمان رفت موج خواهد بود حاصل ضرب اين زمان در سرعت موج مافوق صوت فاصله مانع تا سنسور را به ما ميدهد كه براساس آن به مدل كردن خودرو نسبت به موانع ميپردازيم.

 

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/14  ساعت: ۰۷

تعداد صفحات:67
نوع فايل:word
فهرست مطالب:
پيشگفتار
مقدمه
فصل اول – آشنايي با PLC
آشنايي با PLC
محاسن PLC
معايب سيستم هاي رله كنتاكتوري
واحدهاي تشكيل دهنده PLC
مفهوم كنترلرهاي قابل برنامه ريزي PLC
زمان پاسخ گويي Scan Time
قطعات ورودي
قطعات خروجي
نقش كنترلرهاي قابل برنامه‌ريزي (PLC) در اتوماسيون صنعتي
مقايسه تابلوهاي كنترل معمولي با تابلوهاي كنترلي مبتني بر PLC
طراحي مدار فرمان توسط كامپيوتر
پروسه كار يك PLC
موارد كاربرد PLC
تفاوت PLC با كامپيوتر
حافظه به كار رفته در PLC
انواع حافظه ها
انواع واحدهاي حافظه
PLC هاي زيمنس
فصل دوم – زبان هاي برنامه نويسي PLC
استانداردهاي زبان PLC
زبان هاي برنامه نويسي در PLC
اصطلاحات PLC
ظرفيت PLC
فصل سوم – برنامه STEP-5
برنامه STEP-5
فصل چهارم – برنامه نويسي به زبان LADER
برنامه نويسي به زبان LADER
شمارنده ها يا كانترها
مقايسه كننده ها COMPRATOR
فصل پنجم – آشنايي با S7
آشنايي با خانواده S7
فرمت آدرس دهي در S7
نرم افزاري هاي جنبي و مرتبط با STEP7
منابع و مآخذ

پيشگفتار:
اتوماسيون صنعتي به بهره گيري از رايانه ها به جاي متصديان انساني براي كنترل دستگاه ها و فرآيندهاي صنعتي گفته مي شود. اتوماسيون يك گام فراتر از مكانيزه كردن است. مكانيزه كردن به معني فراهم كردن متصديان انساني با ابزار و دستگاه هايي است كه ايشان را براي انجام بهتر كارشان ياري مي رساند. نمايان ترين و شناخته شده ترين بخش اتوماسيون صنعتي ربات هاي صنعتي هستند.
امروزه كاربرد اتوماسيون صنعتي و ابزار دقيق در صنايع و پروسه هاي مختلف صنعتي به وفور به چشم ميخورد. كنترل پروسه و سيستم هاي اندازه گيري پيچيده اي كه در صنايعي همچون نفت، گاز، پتروشيمي، صنايع شيميايي، صنايع غذايي، صنايع خودرو سازي و غيره به كار مي آيد نيازمند ابزار آلات بسيار دقيق و حساس ميباشند. پيشرفت هاي تكنيكي اخير در كنترل فرآيند و اندازه گيري پارامترهاي مختلف صنعتي از قبيل فشار، دما، جريان و غيره باعث افزايش كيفيت محصولات و كاهش هزينه هاي توليد گرديده است.
به طور كلي برخي از مزاياي اتوماسيون صنعتي از اين قبيل اند:
1) تكرار پذيري فعاليت ها و فرآيندها
2) افزايش كيفيت محصولات توليدي
3) افزايش سرعت توليد (كميت توليد)
4) كنترل كيفيت دقيق تر و سريع تر
5) كاهش پسماندهاي توليد (ضايعات)
6) برهمكنش بهتر با سيستم هاي بازرگاني
7) افزايش بهره وري واحدهاي صنعتي
8) بالا بردن ضريب ايمني براي نيروي انساني و كاستن از فشارهاي روحي و جسمي
در حال حاضرارتقاء سطح كيفي محصولات توليدي در صنايع مختلف و در كنار آن افزايش كمي توليد، هدف اصلي هر واحد صنعتي ميباشد و مديران صنايع نيز به اين مهم واقف بوده و تمام سعي خود را در جهت نيل به اين هدف متمركز نموده اند.
لازمه افزايش كيفيت و كميت يك محصول، استفاده از ماشين آلات پيشرفته و اتوماتيك ميباشد. ماشين آلاتي كه بيشتر مراحل كاري آن ها بطور خودكار صورت گرفته و اتكاي آن به عوامل انساني كمتر باشد. چنين ماشين آلاتي جهت كاركرد صحيح خود نياز به يك بخش فرمان خودكار دارند كه معمولا از يك سيستم كنترل قابل برنامه ريزي (بعنوان مثال PLC يا مدار منطقي قابل برنامه ريزي) در اين بخش استفاده مي گردد. بخش كنترل قابل برنامه ريزي مطابق با الگوريتم كاري ماشين، برنامه ريزي شده و مي تواند متناسب با شرايط لحظه اي به عملگر هاي دستگاه فرمان داده و در نهايت ماشين را كنترل كند.
همان طور كه گفته شد بخش كنترل در هر سيستم صنعتي بايستي متناسب با شرايط لحظه اي به عملگرها فرمان دهد بنابراين در يك ماشين يا به طور كلي در يك فرآيند صنعتي بخش اول يك چرخه كنترلي، برداشت اطلاعات از فرآيند ميباشد.
جمع آوري اطلاعات در فرآيندهاي صنعتي با استفاده از سنسورها يا حسگرها صورت ميگيرد. اين حسگرها به منزله چشم و گوش يك سيستم كنترلي عمل ميكنند. امروزه در بسياري از ماشين آلات صنعتي استفاده از سنسورها امري متداول ميباشد تا جايي كه عملكرد خودكار يك ماشين را ميتوان با تعداد سنسورهاي موجود در آن درجه بندي كرد. وجود سنسورهاي مختلف در فرآيند اتوماسيون به اندازه اي مهم ميباشد كه بدون سنسور هيچ فرآيند خودكاري شكل نمي گيرد بنابراين سنسورها يكي از اجزاي لاينفك سيستم هاي اتوماسيون صنعتي ميباشند.
در گذشته نه چندان دور بسياري از تابلوهاي فرمان ماشين آلات صنعتي، براي كنترل پروسه هاي توليد از رله هاي الكترومكانيكي يا سيستم هاي پنوماتيكي استفاده ميكردند و اغلب با تركيب رله هاي متعدد و اتصال آن ها به يكديگر منطق كنترل ايجاد ميگرديد. در بيشتر ماشين آلات صنعتي، سيستم هاي تاخيري و شمارنده ها نيز استفاده ميگرديد و با اضافه شدن تعدادي Timer و شمارنده به تابلوهاي كنترل حجم و زمان مونتاژ آن افزايش مي يافت.
اشكال فوق با در نظر گرفتن استهلاك و هزينه بالاي خود و همچنين عدم امكان تغيير در عملكرد سيستم، باعث گرديد تا از دهه 80 ميلادي به بعد اكثر تابلوهاي فرمان با سيستم هاي كنترلي قابل برنامه ريزي جديد يعني PLC جايگزين گردند. در حال حاضر PLC يكي از اجزاي اصلي و مهم در پروژه هاي اتوماسيون ميباشد كه توسط كمپاني هاي متعدد و در تنوع زياد توليد و عرضه مي گردد. بطور خلاصه سيستم هاي نوين اتوماسيون و ابزار دقيق مبتني بر PLC در مقايسه با كنترل كننده هاي رله اي و كنتاكتوري قديمي داراي امتيازات زير است :
1) هزينه نصب و راه اندازي آن ها پايين ميباشد.
2) براي نصب و راه اندازي آن ها زمان كمتري لازم است.
3) اندازه فيزيكي كمي دارند.
4) تعمير و نگهداري آن ها بسيار ساده ميباشد.
5) به سادگي قابليت گسترش دارند.
6) قابليت انجام عمليات پيچيده را دارند.
7) ضريب اطمينان بالايي در اجراي فرآيندهاي كنترلي دارند.
8) ساختار مدولار دارند كه تعويض بخش هاي مختلف آن را ساده مي كند.
9) اتصالات ورودي – خروجي و سطوح سيگنال استاندارد دارند.
10) زبان برنامه نويسي آن ها ساده و سطح بالاست.
11) در مقابل نويز و اختلالات محيطي حفاظت شده اند.
12) تغيير برنامه در هنگام كار آسان است.
13) امكان ايجاد شبكه بين چندين PLC به سادگي ميسر است.
14) امكان كنترل از راه دور (بعنوان مثال از طريق خط تلفن يا ساير شبكه هاي ارتباطي) قابل حصول است.
15) امكان اتصال بسياري از تجهيزات جانبي استاندارد از قبيل چاپگر، باركد خوان و … به PLC ها وجود دارد.

 

:
برچسب‌ها:

نويسنده :ketabpich
تاريخ: 1395/10/13  ساعت: ۱۴

تعداد صفحات:68
نوع فايل:word
فهرست مطالب:
مقدمه
فصل اول – سنسورها و انواع آن
تعريف عبارت سنسور
تكنيك هايي در توليد سنسور
فصل دوم – معرفي سنسورهاي نوري
سنسورهاي نوري
مقاومت هاي نوري
ساير مواد نيمه هادي براي سنسورهاي نوري
فوتو ترانزيستور، فوتوديود و فوتو دارلينگتون
فصل سوم – انواع مختلف آشكار ساز نوري
انواع مختلف سنسور نوري
اشكال كاربردي سنسورهاي نوري
فصل چهارم – بررسي كاربرد سنسور نوري در زمينه هاي مختلف
حسگر ها در رباتيك
كاربرد سنسور در دوربين ديجيتال
فصل پنجم – مثال و شبيه سازي
مدار الكترونيكي روبات نورياب
مدار كليد حساس به نور
منابع و ماخذ

مقدمه :
سنسورها از نظر كيفي مرحله جديدي را در استفاده هر چه بيشتر از همه امكاناتي كه توسط علم ميكرو الكترونيك به وجود آمده است، به ويژه در زمينه پردازش اطلاعات عرضه مي كند. سنسورها رابط بين سيستم كنترل الكتريكي از يك طرف و محيط، عمليات، رشته كارها يا ماشين از طرف ديگر هستند. درگذشته تكامل سنسور قادر به هم گامي با سرعت تكامل در صنعت ميكروالكترونيك نبوده است. در واقع در اواخر دهه 1970 و اوايل دهه 1980 تكامل سنسور در سطح بين المللي بين سه و پنج سال عقب تر از تكامل علم ميكروالكترونيك در نظر گرفته ميشد. اين حقيقت كه ساخت عناصر ميكروالكترونيك غالباً بسيار ارزانتر از وسائل اندازه گيري كننده اي (سنسورهايي) بود كه آن ها احتياج داشتند يك مانع جدي در ازدياد و متنوع نمودن كاربرد ميكرو الكترونيك پردازشگر اطلاعات در گستره وسيعي از عمليات و رشته كارها بود. چنين اختلافي بين علم ميكرو الكترونيك مدرن و تكنولوژي اندازه گيري كننده كلاسيكي تنها توانست به واسطه ظهور تكنولوژي سنسورهاي مدرن برطرف شود. به اين دليل، امروزه سنسورها بعنوان يكي از عناصر كليدي جهت تكامل پيوسته و شتابان علم ميكروالكترونيك شمرده مي شوند.
كار تحقيقاتي و تكاملي گسترده در شاخه هاي مختلف تكنولوژي سنسور در سطح بين المللي آغاز شد. حاصل اين فعاليت آنست كه امروزه تجارت سنسور از يكي از بالاترين نرخ هاي رشد سالانه بهره مند ميباشد. از آن جا كه سنسورها وسيله اساسي براي بدست آوردن همه اطلاعات لازم در رابطه با وضعيت هاي مختلف عمليات و محيط هستند (در مفهوم عام كلمه)، بنابراين آن ها در امكانات كاملا جديدي را به روي اتوماسيون طيفي از عمليات در صنعت، منزل، كارخانه، كاربردهاي طبي، و ساير بخش ها مي گشايند .اين مثال ها براي كارخانه هاي تمام اتوماتيك و مجتمع آينده تنها ميتواند به كمك سنسور ها تحقق يابد.

 

:
برچسب‌ها:

[ ]
تاریخ امروز
آمار بازدیدکنندگان
ابزارک هاي وبلاگ